本书是在“数字化”时代背景下,为适应经济、管理类专业在大学数学课程教学中的最新需求而编写的一部微积分教材。 本书分上、下两册,上册主要内容包括函数、极限与连续,导数与微分,微分中值定理与导数应用,不定积分,定积分及其应用;下册主要内容包括多元函数微分学,重积分,无穷级数,常微分方程,差分方程。在书中附有若干微视频,包括
本教程是大学数学系一、二年级基础课程“数学分析”的配套习题课教材,分上、下两册。本书是上册,主要讲解实数域的基本理论、数列的极限、一元函数的极限和连续性、一元函数的微分学及其应用,以及一元函数的积分学及其应用等内容典型的、常用的习题解法与技巧,帮助学生夯实基础、深化学习。每堂习题课都以相应章节需要学生重点掌握和比较难掌
本书是基于编者在复旦大学多年的教学实践经验编写而成的。全书共分为六章:第一章阐述了微分方程的基本概念,并列举了若干典型的微分方程实例;第二章讲解了一些初等解法以及线性方程的相关内容;第三章介绍了线性微分方程组;第四章深入探讨了常微分方程的基本理论;第五章初步介绍了定性理论;第六章则聚焦于一阶偏微分方程。本书适合作为高水
本书是《泛函分析》的新修订版,新版教材保持了第2版内容适中、深浅适宜、简明扼要、论述清晰的特色。全书共分五章,从赋范线性空间与内积空间的基本理论入手,循序渐进地阐释了其上有界线性算子与有界线性泛函的基本定理,系统地展示了有界线性算子的谱理论体系,并适当融入了对核心定理的应用分析。习题编排兼顾基础性与启发性,难度设置较合
本书是高等院校数学专业高年级及研究生教材。本书主要介绍二阶线性椭圆偏微分方程相关理论,内容包括:调和函数及其性质,格林函数,Laplace方程的可解性,Holder连续空间,Newton位势及其正则性,Poisson方程的可解性,一般线性椭圆算子的极值原理与Schauder理论。通过本教材的讲授,读者可以较为全面地了解
本书主要介绍常微分方程的求解问题,内容以常微分方程发展的时间线为导向,共分为六章内容。第一章,微分方程基本概念与基本定理,介绍微分方程的来源与概念;第二章,初等积分法,介绍常微分方程的基本概念以及在微分方程发展初期几类特殊方程的求解方法;第三章,高阶线性微分方程,主要介绍高阶微分方程的解的结构和常系数高阶线性微分方程的
本书是在新文科背景下,精心编写的新一代微积分教材。全书分为上、下两册,上册内容包括函数、数列极限、函数极限与连续性、一元函数导数与微分、导数的应用、不定积分;下册内容包括定积分及其应用、多元函数微分学、二重积分、无穷级数以及微分方程与差分方程。本书在内容上力求精炼简洁,通过实际应用案例提升知识的趣味性。全书提供了丰富的
本书是在新文科背景下,精心编写的新一代微积分教材。全书分为上、下两册,下册内容包括定积分及其应用、多元函数微分学、二重积分、无穷级数以及微分方程与差分方程。本书在内容上力求精炼简洁,通过实际应用案例提升知识的趣味性。全书提供了丰富的数字资源,包括教学课件、课后练习答案、考研真题详解及训练、重难点题目的微视频讲解等内容。
本书上册包括:函数、极限和连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用等内容。
本书第一版是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材和教育部工科数学学科“九五”规划教材,普通高等教育“九五”国家级重点教材,曾获教育部2002年全国普通高等学校优秀教材一等奖;第二版是“十二五”普通高等教育本科国家级规划教材;第三版获陕西省2022年高等教育优秀教材特