本书内容包括:原函数(不定积分),定积分,积分学在几何学、力学与物理学中的应用,常数项无穷级数,函数序列与函数级数,反常积分,依赖于参数的积分。
本书介绍了一阶常微分方程、高阶线性方程、幂级数法、Laplace变换法、线性微分方程组、数值方法、非线性方程和现象等内容。
数学分析(第二版)(下册)
本书共分3册来讲解数学分析的内容.在深入挖掘传统精髓内容的同时,力争做到与后续课程内容的密切结合,使内容具有近代数学的气息.另外,从讲述和训练两个层面来体现因材施教的教学理念.第1册内容包括数列极限,函数极限与连续,一元函数的导数与微分中值定理,Taylor公式,不定积分,Riemann积分.书中配备大量典型实例,习题
本书是为适应数学系本科生教学改革的需要,结合作者多年来教学实践的经验体会编写而成的,从内容的安排、思维方法的训练等方面作了一些改革性的尝试。本书为第二册,主要内容包括数列极限、函数极限、函数的连续性、导数与微分、中值定理与Taylor公式、不定积分与定积分、数项级数、广义积分、函数级数以及Fourier级数等。本书可作
本书通过对微积分发展历史的回顾,对微积分各个部分内容和方法的概括综合,以及对若干常见的疑难问题的解答,帮助读者在整体上理解微积分的原理和方法.然后通过典型例题的分析和习题的训练,帮助读者扎扎实实地掌握微积分的基本解题方法.认真阅读这本书并且钻研其中的问题,能够帮助读者全面提高对微积分的理解水平和解题能力.
本书主要阐述了概念的背景来源,解决问题的思想方法,每部分内容在整个理论体系中的作用和地位,以及它们与别的概念、理论的内在联系等。
本书是在东北师范大学数学系微分方程教研室所编的常微分方程教材的基础上,按照现行教学大纲的要求修订而成的。这次修订在基本保持原教材风貌的基础上,更正了原教材的个别错误,补充了少量新内容,增加了一些联系实际的应用方面的内容,充实了教材的配套习题,调整了某些内容的教学顺序。本书可作为高等院校特别是高等师范院校数学系本科生教材
广义函数与数学物理方程(第2版)
《数学分析讲义练习题选解(第2版)》精选了刘玉琏等编写的《数学分析讲义》(第4版)三分之二以上的习题作解答。通过分析解答所选题目教给学生分析问题和解决问题的方法,并对一些较难的习题给出了题前分析、详尽的解答步骤和题后注解。为了切实地帮助初学者,还对某些典型题的分析和解题技巧作了较详细的说明,解答清晰、易懂,文字精练、准