本习题册根据经济管理类各个专业的教学需求,与教学大纲各章节对应,精编九个章节,每个章节题目覆盖了相应全部知识点,分节编排。本书紧扣教材,题型灵活多样、题量适宜、重点突出,兼顾基础题与提高题,适合课后学生练习与巩固相应知识点。具体章节如下:函数,极限与连续,导数与微分,中值定理与导数应用,不定积分,定积分,多元函数微积分
《重叠函数基础理论》立足作者在重叠函数相关方面已经取得的成果,旨在对重叠函数基本性质(迁移性、齐次性、分配性等)、构造方法(乘法生成构造等),以及格值情形下重叠函数及其衍生函数的构造等进行系统整理,以期为聚合函数相关研究领域的读者系统学习重叠函数相关理论提供支撑。
本书几乎囊括了所有主流的凸优化算法,包括梯度法、次梯度法、多面体近似算法、近端法和内点法等。这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或间接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。各章的内容如下:第1章,凸优化模型概述;第2章,凸优化算法
本书分为三大部分。第一部分为“同步练习”,该部分主要包括四个模块,即内容提要、典型例题分析、习题精选和习题详解,旨在帮助读者尽快地掌握微积分课程中的基本内容、基本方法和解题技巧,提高学习效率。第二部分为“模拟试题及详解”,该部分给出了20套模拟试题,其中上、下学期各10套,并给出了详细解答过程,旨在检验读者的学习效果,
本书是应用型高等学校测控技术与仪器、机械电子工程、电子信息工程、电子信息科学与技术、通信工程等专业本科“复变函数与积分变换”课程的教材,内容包括四部分:第一部分极限和导数(包括第1章复变函数的极限和第2章解析函数)、第二部分积分(包括第3章复变函数的积分)、第三部分级数和留数(包括第4章解析函数的级数和第5章留数)、第
本书主要为学习现代偏微分方程理论课程和其他相关数学专业的研究生编写的一本讲义。内容由测度论基础、Lebesgue函数空间与Sobolev函数空间三部分组成。其中,测度论以Radon测度为核心,介绍相关积分与微分的基础理论,如Fubini定理、Radon-Nikodym-Lebesgue分解定理等。Lebesgue函数空
本书是"十二五"普通高等教育本科国家级规划教材、普通高等教育"十一五"国家级规划教材和面向21世纪课程教材,主要内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分等,附录为实数理论和积分表,书后附微积分学简史数字资源。本次修订
本书是十二五普通高等教育本科国家级规划教材、普通高等教育十一五国家级规划教材和面向21世纪课程教材,获首届全国教材建设奖优秀教材二等奖,主要内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数微分学等。本次修
本书是为适应数学学科本科生教学、面向21世纪进行改革的需要,结合吉林大学数学分析教学团队多年来的实践经验体会和传承编写而成的。作者从内容的安排、思维方法的训练等方面进行改革,作了一些有益的尝试。本书的主要内容包括极限论初步、微分学、积分学、无穷级数论、多元函数的微分学、多元函数的积分学、广义积分与含参变量的积分以及变分