On Existence and Multiplicity of Solutions for Some Nonlinea
本书依据教育部高等学校大学数学课程教学指导委员会的指导意见和现行教学大纲编写。本书通过填空题、选择题加强学生对基本知识的理解和掌握,通过计算题增强学生对理论知识的应用能力和计算能力,通过常规证明题、讨论题等(包括近年来部分高校的特色考研题、数学竞赛题)提高学生分析问题和解决问题的综合能力。本书具有相对独立性,除可以作为
本书书分为5章36节。本书是阿诺德的名著,他的许多优秀作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被誉为最优秀的常微分教材。
本书内容包括:单一阶方程的一般理论;波传播理论中的Huygens原理;弦振动;傅里叶方法;振荡理论和振动原理;调和函数特性;拉普拉斯基本解及位势;双层位势;球函数、麦克斯韦定理和可去奇点定理;用拉普拉斯方程解边界值问题;线性方程和线性系统理论。
梅林变换被广泛用于各种纯数学与应用数学之中,特别是应用于微分方程和积分方程、狄利克雷级数的理论中,在数学物理学、数论、数学统计学、渐进展开理论,特别是在特殊函数和积分变换的理论中都可以找到梅林变换的广泛应用。本书详细介绍了梅林变换,共3章,第一章为通式,介绍了包含任意函数的变换;第二章为初等函数,介绍了代数函数、指数函
本书介绍了狄拉克8一函数和广义函数δ理论,列举了几类经典的广义函数类型,并给出了证明广义函数合理论的多种方法,还阐述了广义函数δ理论与物理学等相关学科的联系。全书共分七编,第一编引言,第二编计算数学中的8一函数,第三编δ一函数与插值,第四编δ一函数,第五编缓增广义函数,第六编丁夏畦论广义函数,第七编附录。
本书介绍了Tricomi问题的相关知识,共四篇,主要包括Tricomi简介和Tricomi问题、化混合型方程为标准形式、唯一性定理、方程E的某几类特殊解的研究、对于椭圆半平面中的闭曲线的存在性定理、一般的存在性定理并将它化为积分方程、存在性定理的证明所依归的积分方程的变形等内容。本书通过对Tricomi问题从提出到具体
本书共分6编,分别介绍了距离与空间,Orlicz空间基本理论,Orlicz空间的性质,Orlicz空间与方程,Orlicz空间与逼近,Orlicz空间与三角级数的内容。书中详细地介绍了Orlicz空间的相关内容以及Orlicz空间在数学领域各个分支中的应用。通过本书的学习,读者可系统而全面地理解和掌握与Orlicz空间
本书研究的内容为非经典扩散方程在时间依赖空间中的吸引子,受到时间依赖整体吸引子的一些研究成果的启发,我们首先研究了时间依赖整体吸引子和强吸引子的存在性,之后通过调整对时间依赖函数的假设,如重新设置其下界和单调性,得到了一些在时间依赖空间中关于拉回吸引子的存在性和正则性、以及拉回吸引子和整体吸引子的上半连续性的成果,它们
本书主要讨论了传统数学分析中的一些经典课题,并给出该课题的相关应用,包括离散型与积分型柯西不等式的应用、广义Gamma函数、完全单调性、广义三角函数、广义椭圆积分、单位球体积以及定积分的计算等内容,此外还介绍了现在渐近分析中的一个重要方法——Mehrez-Sitnik方法。