复变函数与积分变换是一般高等院校工科专业硕士研究生一年级的必修课程,本书为高等院校和科研院所非数学专业研究生教学而编写.全书共8章,具体包括复变函数与解析函数、复变函数的积分、解析函数的级数表示、共形映射、解析函数在平面场中的应用、傅里叶变换、拉普拉斯变换、梅林变换,以及附录的实数序列的上下极限、快速傅里叶变换等内容.
上海大学理学院数学系,成立于1960年,其前身是上海科技大学数学系,由嘉定校区的数学系和延长校区、徐汇校区、嘉定东校区的数学教研室合并而成,本书主编为杨建生。杨建生,基础数学博士,上海大学数学系教授。《微积分强化训练题》(第三版)是2015年上海普通高校优秀本科教材《高等数学(上、下)》(上海大学数学系编,高等教育出版
本书作为高等院校理工科专业基础教材,主要内容包括复变函数基本理论以及复变函数在弹性理论和线弹性断裂力学中的应用。全书共分为8章:前6章主要介绍了复变函数的基本理论,包括复数与复变函数、解析函数、复变函数的积分、级数、留数和共形映射;第7章、第8章分别介绍了复变函数在弹性理论和线弹性断裂力学中的应用;附录中介绍了复变函数
应用复变函数与积分变换是机电、建筑、计算机和物理学等相关专业的一门重要基础课程,它既是学生学习后续专业课的基础,又是他们将来从事专业技术工作的重要基础和工具。本书是为适应培养创新型与应用型本科人才和教学改革的需要,为适应科技和工程技术人员对积分变换的需要而编写的,其内容与结构新颖,注重直观性、实用性和创新性,深入浅出,
本书共六章,包括函数极限连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程。
本书是分数阶系统与高阶逻辑形式化验证的基础理论研究著作。分数阶系统是建立在分数阶微积分方程理论上实际系统的数学模型。分数阶微积分方程是扩展传统微积分学的一种直接方式,即允许微积分方程中对函数的阶次选择分数,而不仅是现有的整数。分数阶微积分不仅为系统科学提供了一个新的数学工具,它的广泛应用也表明了实际系统动态过程本质上是
本书是微积分(第3版)(上、下册)的配套系统课教材,也分上、下册。上册内容包括函数、极限与连续、导数与微积分、微分中值定理与导数应用、不定积分和定积分及其应用。
"为适应新时代应用型本科并兼顾职教本科创新人才培养,北京航空航天大学、南开大学、大连理工大学、天津仁爱学院、吉林建筑科技学院等多所院校的知名教授根据目前应用型本科及职教本科教学现状,对本书进行了修订。本次修订在保持了第二版的特色及内容结构的基础上,对部分内容进行了调整,并针对教学中及实际生活中常出现的一些问题增添了“想
本书共八章,内容包括:函数、函数的极限与连续性、导数与微分、微分中值定理与导数的应用、一元函数积分学、级数、多元函数微积分学、微分方程与差分方程。具体包含函数的表示法、数列的极限等内容。
本书共分为6章,主要内容包括线性正则变换背景简介、线性正则变换的定义与基本原理、二维线性正则变换理论及其应用、线性正则变换域的时频分析、线性正则变换域雷达信号的参数估计、线性正则变换在ISAR成像中的应用。