《变分方法与非线性椭圆方程解的存在性与集中性研究》是《数学与统计学学术研究丛书》中的一部,主要探讨了变分方法在非线性椭圆方程研究中的应用,特别是解的存在性与集中性问题。书中通过系统地介绍变分方法的理论基础及其在非线性偏微分方程中的应用,深入分析了几类具有重要物理背景的椭圆型偏微分方程。全书共分为四章:第一章为预备知识,
【内容简介】本书是为工科各专业研究生编写的泛函分析基础教材,全书共分七章,内容包括:实分析基础、距离空间、Banach空间、Hilbert空间、有界线性算子、线性算子的谱理论、线性算子半群及其应用。本书注重介绍问题的来源和背景,内容丰富,列举了大量例题,叙述深入浅出,特别强调泛函分析理论和方法在最优化问题和控制论中的应
本书是作者三十多年泛函分析教学经验和心得成果。主要内容包括度量空间、赋范线性空间和有界线性算子、希尔伯特空间几何学、巴拿赫空间基本定理、算子理论和算子代数初步等。全书力求结构合理,内容由浅入深,逻辑层层递进,例题丰富多样,而且每章最后配备大量习题以供读者练习之用。
本书介绍It?型马尔可夫跳变随机反应扩散方程和脉冲(随机)反应扩散方程(包括随机泛函反应扩散方程与中立型脉冲反应扩散方程)的稳定性基本理论与研究进展。在第1章,给出了马尔可夫跳变随机反应扩散方程的稳定性一般理论,然后讨论了几类具有重要应用价值的随机反应扩散神经网络的稳定性。在第2章,利用Ito。公式、比较原理和Lyap
本书是作者结合在电子科技大学为数学专业本科生、研究生及工科各专业的硕士和博士研究生讲授泛函分析课程近十年的教学经验,编写的一本泛函分析教材。本书从最基本的概念出发介绍泛函分析的知识,借助常见“平凡”的例子帮读者更好地理解泛函分析的概念。内容涵盖泛函分析的基本原理及其在偏微分方程理论、数值计算方法和最优化分析等领域的应用
无限维耗散动力系统是数学的一个重要分支,与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用。本书主要介绍无限维耗散动力系统并应用于不可压缩Navier-Stokes方程。主要内容包括无限维系统的全局吸引子、指数吸引子和惯性流形的基本概念、存在性、构造原理和稳定性,Lyapunov指数和吸引子的Haus
本书主要讲述了线性拓扑空间的基本知识及其在泛函分析中的应用;着重强调了线性拓扑空间在分析学,尤其是在泛函分析中的重要性。本书内容涵盖了与泛函分析紧密相关的诸多主题,如线性算子的连续性和有界性、Hahn-Banach定理、弱拓扑和*弱拓扑,以及赋范空间中的弱紧性和弱列紧性等。此外,本书中还特别介绍了赋β-范空间,这是一类
本书秉持学为中心理念,用一个梦游故事串联了复变函数与积分变换课程的主要知识点,包括复数和复变函数、导数、积分、级数、留数、保形映射、傅里叶变换和拉普拉斯变换等内容。本书模糊了时空概念,强调知识体系所蕴含的科学思想方法、内在逻辑性以及表达的趣味性,本书采用章回体小说的形式,用近乎荒诞的故事和诙谐幽默的语言,解释了复变函数
本书系统介绍了凸分析基础的五个核心部分。①涉及与凸集理论有关的线性子空间、仿射集、超平面、凸包、单纯形、闭包、内部、相对内部、凸集分离和支撑超平面等基本性质和一些重要定理。②涵盖了与凸锥有关的顶点锥、锥包、凸锥包、回收锥、共轭锥(正极锥)、负极锥、法锥与切锥、障碍锥、凸锥分离、多面体、多面锥和多面体集等基本性质和重要定
傅里叶变换在物理学和工程中有着广泛的应用,非常重要.本书简要介绍了傅里叶变换的理论和应用,对物理、电气和电子工程以及计算机科学专业的学生来说很有价值.本书在简要介绍了傅里叶变换的基本思想和原理后,介绍了它在光学、光谱学、电子学和电信等领域的应用,说明其强大功能.本书还介绍了多维傅里叶理论中一些很少被讨论但非常重要的领域