本书汇集了六篇关于断层成像以及相关反问题的数学方面的文章,它们都来自拉东变换和反问题的应用短期课程的演讲内容。这六篇文章分别为:X射线断层成像与拉东变换入门、计算机断层成像算法的发展、扇形波束断层扫描与抽样理论、拉东型广义变换及其应用、管道检测中的反问题、随机介质中的稳健的(抗干扰)干涉成像。在本书的第三篇文章中,阿德
无穷遍历理论是研究无穷测度空间中的保测变换的理论。本书着重介绍了无穷保测变换的特殊性质。本书适合对遍历理论、动力系统和概率论感兴趣的研究生以及数学研究人员阅读参考。Infiniteergodictheoryisthestudyofmeasurepreservingtransformationsofinfinitemea
本书介绍了非线性色散方程理论的最新进展,主要是非线性薛定谔方程。本书适合对偏微分方程及其相关领域感兴趣的研究生和数学研究人员阅读参考。Thisvolumepresentsrecentprogressinthetheoryofnonlineardispersiveequations,primarilythenonline
测地流是现代动力系统理论体系中最重要的研究课题之一,其动力学理论已发展成为融合黎曼几何、芬斯勒几何、微分动力系统、哈密顿系统、辛几何、拓扑学等多个领域的前沿交叉学科。本书着重介绍了双曲流形的几何性质;在此基础上,研究了双曲流形上测地流的一致双曲性、拓扑动力学和遍历性等动力学性质。在内容上,本书十分强调几何直观,兼顾表述
本书介绍了KodairaSpencer复结构变形理论,给出了Kodaira嵌入定理的原始证明,还包括了Kuranishi的半连续性定理和局部完备性定理。本书适合对抽象复流形及相关知识感兴趣的研究生以及数学研究人员阅读参考。Themainpurposeofthisbookistogiveanintroductiontot
本书主要介绍作者和国内外同行在椭圆方程有限元逐点超收敛领域中取得的研究成果,书中绝大部分内容是作者及其合作者二十年来在该领域的研究所得。本书主要内容是基于“离散格林函数——两个基本估计”这一框架,以投影型插值算子和权函数为主要分析工具,深入系统地研究了椭圆方程有限元的逐点超收敛性。书中的研究方法和成果可以运用到发展型偏
本书发展了处理非线性常微分方程和偏微分方程的拓扑和解析方法。本书适合对泛函分析感兴趣的研究生和数学研究人员阅读参考。SinceitsfirstappearanceasasetoflecturenotespublishedbytheCourantInstitutein1974,thisbookhasservedasani
本书共分16讲,对应大一下学期16次工科数学分析习题课,内容涉及向量代数与空间解析几何、多元函数微分学及其应用、多元函数积分学及其应用、无穷级数等。每一讲的内容主要包括知识点小结、典型例题解析、练习题三部分,其中典型例题大都来自历年的考研题、有关学校的期中期末试题,题型丰富,既包括选择题、填空题,还包括计算题和证明题,
本书中的文章首次出现在1997年1月6日至7日在加利福尼亚州圣地亚哥举办的有关计算代数几何的应用的短期课程中,编写它们的目的是将计算代数几何的基本思想带给广大的数学家。前两篇文章介绍了主题中的两个重要成员,格罗布纳基和结式,第三篇文章综述了解多项式方程的一些最新方法。最后的四篇文章讨论了计算机辅助几何设计、复杂信息系统
微分动力系统的研究始于上世纪60年代初,它主要研究随时间演变的动力系统的整体性质及其在扰动中的变化,其前身为常微分方程定性理论和动力系统理论,随着对非线性力学问题研究的深入和系统科学各分支的形成,微分动力系统越来越成为有关学者关注的新兴学科领域。本书是作者根据多年科研与教学的积累编写而成,内容包括:动力系统简介,双曲不