本书是《Scikit-learn机器学习详解》(潘风文编著)的进阶篇,讲解了Sklearn(Scikit-learn)机器学习框架的各种高级应用技术,包括数据集导入工具、集成学习、模型选择和交叉验证、异常检测、管道、信号分解、模型持久化以及Sklearn系统高级配置。通过本书的学习,读者可快速掌握Sklearn框架的高
本书从语义匹配的角度解决搜索引擎和推荐系统的关键痛点,为构建解决语义匹配问题的深度学习模型提供了通用框架。第1章概述搜索和推荐中的语义匹配问题,以及近年来的研究进展。第2章介绍传统匹配模型,包括潜在空间模型。第3章介绍深度学习技术在构建匹配模型时的应用。第4章和第5章分别介绍用于搜索和推荐的深度匹配模型,并将当前的深度
本书讲解概率图模型的基本原理及其在机器学习、大数据建模、深度神经网络模型中的应用,并且从概率图模型的角度讲解机器学习算法、深度神经网络模型的概率原理,培养学生知其然,并知其所以然的思维方式,解决学生应用建模时仅局限于模型选型和调参的问题。本书内容丰富,将原理与实例相结合,数学与代码相结合,可作为高等院校的人工智能
本教材遵循案例教学模式进行课程教学设计,围绕人工智能应用案例展开,强调学科教学设计、主要研究内容、核心研究领域及前沿理论和技术等,内容涉及图像、视频、语音、文本和机器人。本教材覆盖人工智能(师范)专业入门必须掌握的知识,强调基础性和前沿性并重,理论和实验相统一,着力于师范生的课程设计能力、案例分析能力和动手实践能力的培
本书介绍了软件测试的基本概念、原理、基本方法及测试过程等内容,包括软件测试技术概述、静态测试、黑盒测试、白盒测试、集成测试、系统测试、测试报告管理、智能软件测试以及单元测试框架Junit、压力测试工具Jmeter的使用方法,同时还介绍了软件测试与质量保证等内容。本书为软件测试的基础教材,旨在让学生能够熟练地对实际软件进
本书主要从技术原理和技术应用两方面讲述人工智能技术。全书共12章,内容涵盖人工智能概述、人工智能软硬件、人工智能与数据、计算机视觉、语音识别、自然语言理解、知识推理、经典机器学习、深度学习与强化学习、自动驾驶、智能问答及人工智能伦理等。本书不仅可作为高等院校智能科学与技术、计算机科学、电子科学与技术、控制科学与工程等专
本书介绍了经典人工智能(逻辑或演绎推理)和现代人工智能(归纳学习和神经网络)之间的覆盖范围。分别阐述了三类方法:演绎推理方法:这些方法从预先定义的假设开始,并对其进行推理,以得出合乎逻辑的结论。底层方法包括搜索和基于逻辑的方法。这些方法在第1章到第5章中讨论。归纳学习方法:这些方法从例子开始,并使用统计方法来得出假设。
2019年我社联合南京大学人工智能学院出版了国内外率先公开出版和发表的人工智能本科专业教育培养体系,在国内人工智能教育领域起到了很好的引领和示范作用,有效推动了中国人工智能高等教育的发展。经过3年多的探索和实践,南京大学完成了一整轮本科和研究生培养方案的修订,准备集结出版这本AI人才培养体系的第2版,一方面对原有的AI
本书语言通俗易懂,以理论和实际应用相结合的方式,深入浅出地介绍了人工智能的基础知识和实现的基本技术。通过典型场景化应用案例,帮助读者理解人工智能技术的概念、原理,激发学生对人工智能的学习兴趣。注重算法思想的介绍,简化了算法的数学推导,让学生在课堂上能够“听得懂、学得会”。本书共8章,分别是人工智能概述、大数据与人工智能
鉴于小数据和数据孤岛成为制约人工智能技术发展的关键挑战性问题。本书全方位讲解人工智能领域的联邦学习原理,翔实阐述在平衡智能学习和信息安全的前提下,如何通过加密机制进行模型参数交换,安全地进行人工智能模型训练,所建立的虚拟共享智能模型与直接聚合所有数据获得的zui优模型性能相近。除此之外,本书致力于全流程介绍联邦学习实践