本书对人工智能安全的基本概念和框架进行梳理。第1章主要介绍信息安全和人工智能的基础性概念。第2章和第3章分别从人工智能信息系统安全和人工智能算法安全的角度,对人工智能安全的研究方法、研究手段进行详述,其中包含大量的真实例子、程序代码。第4章主要讨论人工智能辅助攻防新场景。第5章主要讨论人工智能安全生态。希望通过本书,传
本书致力于介绍图神经网络的基本概念和算法、研究前沿以及广泛和新兴的应用,涵盖图神经网络的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景方方面面的内容。全书分为四部分:第一部分介绍图神经网络的基本概念;第二部分讨论图神经网络成熟的方法;第三部分介绍图神经网络典型的前沿领域;第四部分描述可能对图神经网络未来研
本书内容共分为10章,从学科基础、技术基础、重点方向与领域、行业应用、伦理法律5方面系统、整体介绍人工智能的定义、方法、体系、应用及其内涵。第1章介绍人工智能定义及新知识体系。第2章介绍人工智能孕育史、机械论、计算历史、控制论、联结主义起源、计算机器的历史,以及当代人工智能历史。第3章介绍与人工智能有关的哲学概念、分支
本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、
本书基于备受读者推崇的王树森“深度强化学习”系列公开视频课,专门解决“入门深度强化学习难”的问题。 本书的独特之处在于:第一,知识精简,剔除一切不必要的概念和公式,学起来轻松;第二,内容新颖,聚焦近10年深度强化学习领域的突破,让你一上手就紧跟最新技术。本书系统讲解深度强化学习的原理与实现,但不回避数学公式和各种模型
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,
机器学习是人工智能的重要方向之一,对提升各行业的智能化程度正在起越来越大的作用。本书通过凝练机器学习的核心思想与方法,综合介绍了Python、常用库和相关工具,以及机器学习的原理与实现,囊括了机器学习与行业相结合的实例,可让没有深厚计算机、编程背景的读者在有限的时间内掌握机器学习的相关知识和应用工具。本书各部分的比例适
本书从理论结合实践编程来学习推荐系统。由浅入深,先基础后进阶,先理论后实践,先主流后推导。第1章较为简单,仅初步带领大家了解什么是推荐系统及推荐系统的简史。第2章到第5章介绍的是主流的推荐算法及推荐算法的推导过程,这部分是本书的核心,每个算法都描述的非常详细且有具体代码帮助大家理解,深度学习的框架将采用PyTorch。
面向MATLAB工具箱的神经网络(第4版)
袁红春,男,博士,教授,博士生导师,1971年1月生。 人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包