如今,绝大多数数据科学家和数据工程师基于高质量的标记数据集来训练学习模型。但是,人工构建训练集既耗时又昂贵,以至于很多公司的机器学习项目无法完成。有一种更为实用的方法。在本书中,WeeHyongTok、AmitBahree和SenjaFilipi向你展示了如何使用弱监督学习模型创建产品。 你将学习如何通过使用Snor
本书将人工智能与人类智慧深度融合,系统、全面地介绍了类脑智能目标检测网络的构建原理、方法、过程,具有较高的学术价值;同时,本书将所构建的类脑智能目标检测网络在无人车交通标志检测、无人车-机械臂协同作业这两个场景进行了示范应用,具有较大的工程应用价值。本书主要的读者群体为从事类脑智能、计算机视觉、无人系统研究的科研工作者
本书基于作者多年的研究成果,详细介绍了跨数据中心机器学习的训练系统设计和通信优化技术。本书面向多数据中心间的分布式机器学习系统,针对多数据中心间有限的传输带宽、动态异构资源,以及异构数据分布三重挑战,自底向上讨论梯度传输协议、流量传送调度、高效通信架构、压缩传输机制、同步优化算法、异构数据优化算法六个层次的优化技术,旨
从取代简单机械的重复劳动到辅助内容创作、医药开发、科学实验,人工智能产品正以惊人的速度在各行业大展拳脚,预示着人类即将进入一个全新的发展阶段。本书通过浅显易懂的语言帮助你理解人工智能产品是什么,人工智能产品是怎么创造出来的以及人工智能产品是如何进行创新迭代的。人工智能行业的快速发展对产品经理提出了更高的要求,产品经理需
深度学习是人工智能与机器学习领域的重要研究分支,经过短短十几年的发展,已经在计算机视觉与图像处理、自然语言处理等领域取得令人瞩目的成就。本书作为深度学习方面的专门书籍,融合了机器学习、人工神经网络和深度学习的相关概念,并且从信号处理视角呈现了深度学习背后的几何学原理,以便从统一的角度去深化理解深度学习的主要模型和算法,
本书以人工智能下的大数据时代为背景,从数据素养、数据分析基础、统计分析、机器学习多个维度全面系统地介绍了如何探索数据、整理数据并分析数据。本书没有给出晦涩难懂的数学公式,也不涉及复杂烦琐的程序代码,而是在阐述基本原理的基础上,辅以简洁的Python程序,让读者能够快速入门,提升个人的数据综合素养。
本教材可以作为人工智能学科相关的机器学习技术的入门教材,目的不在于覆盖机器学习技术的所有知识点,而是介绍机器学习的常用算法及其应用,使读者了解机器学习的基本构成及不同场景下使用何种机器学习算法。为了增强实践效果,本教材引入了多个基础技术案例及综合实践案例,以帮助读者了解机器学习涉及的基本知识和技能。
本书主要讲述计算机博弈及其实现的过程。第1章介绍计算机博弈的一些基本情况。第2章介绍极大极小算法,并以井字棋为例实现。第3章介绍Alpha-Beta算法,并以亚马逊棋为例实现。第4章介绍期望极大极小算法,并以爱恩斯坦棋为例实现。第5章介绍UCT算法,并以海克斯棋为例实现。第6章介绍强化学习在计算机博弈游戏中的应用,并以
本书主要包括8个项目,分别为搭建TensorFlow开发环境,手写数字识别:TensorFlow初探,波士顿房价预测:前馈神经网络,服装图像识别:Keras搭建与训练模型,图像识别:卷积神经网络,AI诗人:循环神经网络,预测汽车油耗效率:TensorFlow.js应用开发和庆娣花卉识别:TensorFlowLite。
智能科学研究智能的本质和实现技术,是由脑科学、认知科学、人工智能等构建的前沿交叉学科。脑科学研究自然智能机理,建立脑模型,揭示人脑的本质;认知科学研究人类感知、学习、记忆、思维、意识等心智活动;人工智能研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。本书系统地介绍了智能科学的概念和方法。全书共分12章。