《凸优化算法》几乎囊括了所有主流的凸优化算法。包括梯度法、次梯度法、多面体逼近法、邻近法和内点法等。 这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或问接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。各章的内容如下:第一章,凸优化模型概述;第2章
本书密切结合经济工作的需要,充分注意逻辑思维的规律,根据高职高专培养应用型人才的要求,删去次要内容,突出重点,说理透彻,本着“打好基础,够用为度”的原则,着重讲解线性代数的基本概念、基本理论及基本方法,培养学生熟练运算与解决实际问题的能力。在质量上坚持高标准,实现零差错。
《一阶非线性偏微分方程引论》根据作者多年讲授一阶非线性偏微分方程课程的讲义编写而成。全书共分为四章,内容包括:基本概念,一阶非线性偏微分方程的局部光滑解,Hanmton-Jacobi方程简介,单个守恒律方程。在编写时注重问题的来龙去脉,力求做到由浅入深、通俗易懂,便于教师讲授和学生学习。
本教材第2版为普通高等教育十五*规划教材,在国内同类教材中有着非常广泛和积极的影响.本版是在第2版的基础上经过较大的修改编写而成的,内容得到了必要而合理的调整,逻辑结构更加清晰明了.本教材分上、下两册.本书为下册,内容包括多重积分、曲线积分、曲面积分,场的数学,数项级数,函数项级数,反常积分,Fourier分析,含参变
《数学物理方程》讲解了建立典型数学物理方程的基本方法,如利用物理学定律建立波动方程、热传导方程、位势方程等,同时介绍了波动方程、热传导方程和Laplace方程的基本解法,如分离变量法、特征线法、延拓法、积分变换法、Green函数法等,并通过建立能量不等式或利用值原理研究了三类数学物理方程的定解问题及解的稳定性。另外,还
《微积分(第2卷英文版)》为《微积分》一书的第二卷,适用于工科院校非数学专业本科新生,亦可作为工程技术人员的参考书籍。本卷包含四个章节,内容涵盖多元函数微分学,多元函数积分学,第二型曲线积分、第二型曲面积分及无穷级数。《微积分(第2卷英文版)》包含大量例题及习题。
微分方程的对称与积分方法
动力系统入门教程及最新发展概述
本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分
本书初版于20世纪40年代,是经典的本科数学教材之一,对复变函数的教学影响深远,被美国加州理工学院、加州大学伯克利分校、佐治亚理工学院,普度大学、达特茅斯学院、南加州大学等众多名校采用。本书阐述了复变函数的理论及应用,还介绍了留数及保形映射理论在物理、流体及热传导等边值问题中的应用。新版对原有内容进行了重新组织,增加了