本书介绍了常微分方程的基本解法与建模应用方法。主要内容包括:常微分方程的初等积分法、高阶线性微分方程的解法、线性微分方程组的解法、常微分方程的算子解法、常微分方程的数值解法及其C程序设计、Maple软件在解常微分方程中的应用、常微分方程的建模应用。部分内容是云南师范大学“微分方程”精品课程教学团队十多年来的教学实践与应
????9??????????????????????????????????????????????????????????????????????????????????????????????????????????????
《微积分与数学模型(第3版下册)》本次修订对多处内容进行了较大改动,其中首先以突出逼近思想为目标改造多处微积分内容表述方式,把逼近作为微积分应用的基础加以强调,并辅以相关训练,进一步强化数学建模的内容。《微积分与数学模型(第3版下册)》分为上、下两册。下册内容包括空间解析几何与向量代数、微分方程、多元函数微分法及其应用
《微积分(下册)》是根据教育部高等学校大学数学课程教学指导委员会*新颁布的《大学数学课程教学基本要求(2014年版)》,按照“强化基础、突出思想、注重方法”的指导思想编写而成,结构新颖、内容简洁、易教易学。全书分上、下两册。《微积分(下册)》为下册,内容包括空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积
《线性偏微分方程中的柯西问题讲义(英文版)》是一个开创性的研究。基于Riemann,Kirchhoff和Volterra的研究,运用其关于所有正常的双曲型方程组的球面和柱面波的相关理论,阿达马扩展和改进了Volterra的工作。主题包括柯西问题的一般性质,基本公式和基本解,具有奇数独立变量的方程和具有偶数独立变量的方程
虽然市面上已经有较多种类的泛函分析研究生教材,但没有一本适合目前新形势下的教材.本书是一部泛函分析的深入教材,以度量空间和有界线性算子理论等泛函分析知识为基础,进一步系统地介绍了线性算子谱理论和算子半群理论.主要内容包括:有界线性算子的谱理论,Banach代数,无界算子的谱理论以及算子半群.它们在调和分析、偏微分方程、
本书是复变函数与积分变换教材,主要内容有:复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、傅里叶变换和拉普拉斯变换。本书系统介绍了复变函数与积分变换的基本理论、方法及其应用。
本教材主要介绍数学分析的基本概念、基本理论与基本方法,包括实数与数列的极限理论,一元函数微积分学,多元函数微积分学,无穷级数等内容。本教材注重工科院校数学学科类专业学生的可读性,针对性强。本教材很好地处理了实数与数列极限理论的关系,在概念的引入与叙述中强调自然性与联系性,较好地克服了这一数学分析教学难题,起到了利于教、
全书共8章,包括复数与复变函数、解析函数、复变函数的积分、级数、留数、保形映射、傅里叶变换、拉普拉斯变换等内容。为方便学生深入掌握《复变函数与积分变换》课程的基本知识,作者精心设计了各章内容的相应梯度,每章配有适量的习题,书后附有参考答案。书末附有傅氏变换和拉氏变换简表,便于读者查阅使用。本书可供高等工科院校的师生作为
本书讲述数学分析的基本概念、原理与方法,分为上、下两册。上册内容包括:函数、数列极限、函数极限、连续性、导数与微分、微分中值定理及应用、不定积分、定积分、定积分的应用、广义积分等。下册内容包括:数项级数、函数项级数、幂级数与Fourier级数、多元函数连续性、多元函数微分学、隐函数定理及应用、含参量积分、重积分、曲线积