变分法是研究泛函极值问题的一门科学,是古典数学的一个分支。《变分法及其应用:物理、力学、工程中的经典建模》共分六章。第一章介绍泛函分析的一些基本概念和符号;第二章、第三章提出四个古典的变分模型,讨论泛函取得极值的必要条件、各种形式的欧拉方程、条件变分、一阶变分的一般形式、自然边界条件、变动边界与横截条件;第四章介绍物理
《实变函数》共分为六章,主要内容包括:集合及其运算、n维空间中的点集、与一点集有关的点和集、Lebesgue测度、测度概念的概述及准备、可测函数、可测函数列的收敛性、Lebesgue积分、Lebesgue积分与Riemann积分的关系、Lebesgue积分与微分的关系等。
《Cn单位球上的函数理论》(作者鲁丁)是springer数学经典教材系列之一,表述清晰易懂,自然流畅,用很少的实分析、复分析和泛函分析基本知识做铺垫,全面介绍了球上基本原理。既是一本很好的参考书,又是一本高年级教程。
本书为重印书,变更封面。本书是俄罗斯的国立莫斯科罗蒙诺索夫大学数学力学系讲授数学分析课程的教材,反映了作者较新的数学教学思想与方法。通过本书可了解近年来俄罗斯大学数学系的数学分析课的教学与改革的情况。全书共分四个部分21章。第一部分(第1~6章)为单变函数的微分学,第二部分(第7~14章)为黎曼积分、多变量函数的微分学
本书以数学分析、线性代数和常微分方程等本科课程所提供的工具为依据来选择偏微分方程课程的内容。把分部积分、场论、Sturm-Liouville等理论与偏微分方程结合起来讨论以便揭示其作用与意义,对极值原理也作了较仔细的论证。本书内容以微积分理论所能容纳的程度为限,具体内容包括:一阶方程、变分问题、常系数线性方程求解方法、
中国科学院数学与系统科学研究院于2011年4月至2011年10月举办了题为“非线性偏微分方程中的分析”的主题研讨班。《非线性偏微分方程分析讲义(第3卷)(精)》由林芳华、张平主编,收集了其中8篇讲义,包括NicolasBurq教授等关于水波问题Cauchy理论的低正则性,Jean-YvesChemin教授关于Navie
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之国内外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由VladimirV.
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。《物理及工程中的分数维微积分(第1卷):数学基础及其理论》介绍分数维微积分的数
《索伯列夫空间和插值空间导论》是以作者研究生教程的讲义为蓝本整理扩充而成,全面讲述了索伯列夫空间和插值理论。书中包括42章,每章尽可能多的包括研究生学习所需的材料,不仅是一部研究生学习的讲义材料,也是很多老师学者关心的课题。通过大量的脚注讲述了本教程的形成过程有关老师的趣闻轶事,这使本书不仅是一本很完善的教程,而且也非