函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书第一版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与最优性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,
本书针对非凸变分不等式投影类方法中客观存在的错误,给出修正的理论结果,进而利用投影技术研究上述正则非凸变分不等式与不动点问题、变分包含问题之间的正确关系,从而建立正则非凸变分不等式和不动点问题之间的等价性。利用这种等价性来讨论正则非凸变分不等式的解的存在性,并且利用这等价替代形式来构造解正则非凸变分不等式的投影类迭代算
《在线凸优化(第2版)》全面更新,深入探索优化和机器学习交叉领域,详细介绍日常生活中许多系统和模型的优化过程。●第2版亮点:增加了关于提升、自适应遗憾和可接近性的章节●扩大了优化和学习理论的覆盖面●应用实例包含专家建议投资组合选择、矩阵补全推荐系统和支持向量机训练等●指导学生完成练习
"本书简要概述了偏微分方程的理论内容与知识框架,重点介绍了几个经典的偏微分方程模型和求解方法,并不涉及模型解的适定性问题,使读者能够快速了解偏微分方程的基本知识,激发读者深入学习偏微分方程的兴趣。同时,本书意图向读者渗透应用偏微分方程的数学思想与文化特征,以便读者更好地体会偏微分方程的应用价值,增强将偏微分方程理论基础
本书第一版已于2012年4月在我社出版并使用至今,并受到了广大读者的认可。但随着时代的发展,特别是手机性能的提高、线上学习的普及和5G移动互联的到来,将其建设成一部立体化的新形态教材以供读者更加便捷的学习阅读,迫在眉睫且具有现实意义和价值。教材共组稿九章内容,包括复数与复变函数、解析函数、复变函数的积分、解析函数的级数
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界公认,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先
本书分上、下两册。上册内容包括:函数、极限、函数的连续性、导数与微分、微分中值定理及导数的应用、不定积分、定积分、定积分的应用、实数基本定理·连续函数性质证明·函数的可积性。下册内容包括:数项级数、函数项级数与幂级数、傅里叶级数、多元函数的极限与连续性、多元函数的微分学、重积分、曲线积分与曲面积分。
数学奥林匹克是较高层次的数学竞赛,在数学的发展中起着至关重要的作用。本书汇集了第1届至第20届中国东南地区数学奥林匹克竞赛试题及解答,内容翔实。本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考阅读。
本书以莫斯科学派的逻辑方法组织复变函数内容,从基础知识到理论延拓,共分十三章,分别为:复数、复变数与复变函数、线性变换与其他简单变换、柯西定理和柯西积分、解析函数项级数及解析函数的幂级数展开式、单值函数的孤立奇异点、留数理论、毕卡定理、无穷乘积与它对解析函数的应用、解析开拓、椭圆函数理论初步、保角映射理论的一般原则,以
本书系统全面地介绍了微分学的相关理论,共包含11章内容,分别为基本公式、数、量、函数、极限、连续性、微分法、代数式的微分法则、导数的各种应用、逐次微分法及其应用、超越函数的微分法。本书适合大学数学系师生及数学爱好者参考阅读。