统计学习是机器学习的重要分支,本书兼顾了数学上的理解和代码实践,内容主要包括基础知识和统计学习模型。第1章、第2章结合VC维介绍过拟合的本质,并介绍手动特征选择的办法;第3章、第4章从最简单的线性模型出发经过概率统计的解读而得到分类和回归算法;第5章讨论了不依赖于假设分布的非参数模型;第6章将核方法作为一种非线性拓展的
本书共12章,第1章介绍机器学习的基本概念和理论,并介绍用于机器学习的R软件环境的准备;第2章介绍如何应用R来管理数据,进行数据的探索分析和数据可视化;第3-9章介绍典型的机器学习算法,包括k近邻分类算法、朴素贝叶斯算法、决策树和规则树、回归预测、黑盒算法—神经网络和支持向量机、关联分析、k均值聚类,并给出大量的实际案
本书是人工智能领域的经典书籍,新版做了全面修订,增加了关于机器学习的内容,并更新了代码示例和练习。本书主要讨论智能体(agent)的基本概念和体系结构,从计算的角度介绍相关的规划、学习、推理、协商、交互机制等理论,基于自主送货机器人、诊断助手、智能辅导系统和交易智能体四个原型应用,在一个连贯的框架下研究智能体的设计、构
本书主要关注如何构建高能效具有学习能力的脉冲型神经元网络硬件,并且提供建立具有学习能力的脉冲型神经元网络硬件协同设计、协同优化方法。完整地描述从高级算法到底层硬件实现的细节。本书同样涵盖了脉冲型神经元网络中的许多基础知识和关键点。 本书从对脉冲型神经元网络的概述开始,讨论基于速率的人工神经网络的应用和训练,介绍实现神经
在每年举办的人工智能洛伯纳大奖赛(LoebnerAI)中,图灵测试让人工智能程序和人类竞赛,以此判断计算机是否可以思考,作者根据参赛亲身经历,讨论该如何认识人类本身的意义。本书还介绍了人工智能的发展历程,从多个方面阐述了人工智能的本质,引出了机器是否能够替代人这个人工智能的根本问题。
本书主要内容包括普通最小二乘法回归、岭回归、Lasso回归、弹性网络回归、正交匹配追踪回归、贝叶斯回归、广义线性回归、随机梯度下降回归、被动攻击回归、鲁棒回归、多项式回归、支持向量机回归、核岭回归、最近邻回归、高斯过程回归、决策树、神经网络模型、保序回归、岭分类、逻辑回归分类、随机梯度下降分类、感知机、被动攻击分类、支
本书主要讲解了图像和文本在计算机中的表达和计算方法、神经网络的基本原理,并以圈叉棋为例讲解了计算机在图像分类问题上挑战人类的卷积神经网络技术,以单词拼写为例讲解了处理文本和语音的循环神经网络技术。读者只需要具备基础的加减乘除计算能力,就可以不借助计算机而掌握书中的所有技术和原理,并尝试实现书中的所有实例。可以说,这本书
本书是一本面向青少年的人工智能科普读本。本书从科普和青少年教育的角度,用浅显易懂和活泼有趣的语言,结合大量漫画图片、情景对话、感知实验、探索实例,介绍人工智能会“学习”、会“看”、会“听说”等方面的技术和应用,并讨论人工智能伦理和展望人工智能未来。本书培养学生对人工智能及新科技的认知,引导学生对人工智能领域产生兴趣,提
神经网络在深度学习和人工智能中发挥着非常重要的作用,其应用领域非常广泛,涵盖从医疗诊断、财务预测到机器诊断等多个领域。《神经网络设计与实现》旨在指导你以实用的方式学习神经网络。书中将简要介绍感知器网络,从而帮助你入门。然后,你将获得有关机器学习的见解,并了解人工智能的未来。接下来,你将研究如何使用嵌入来处理文本数据,并
本书从人工智能的基本定义出发,由浅入深地阐述了人工智能的理论、策略、研究方法和应用领域,以梳理知识脉络和要点的方式,详细介绍了知识表示、逻辑推理及方法、非确定性推理及方法、搜索策略、机器学习等方面的内容。作为导论书籍,本书概念论述清楚,内容丰富,通俗易懂,在较为全面介绍人工智能的基础上对一些传统内容进行了取舍。为满足读