本书致力于推动人工智能的普及教育,结合最新的人工智能科学技术的发展成果,使用通俗易懂的语言深入浅出地介绍了人工智能的相关知识,重点介绍了人工智能的孕育、人工智能的诞生、人工智能的复苏、人工智能的高速发展、人工智能的应用分支和哲学与思考等方面,在每章节后都有与之对应的章节习题,供学习者学习,以强化学生解决问题的能力。
《机器学习实用教程》将根据高等院校所开设的《机器学习》教学实践的要求,结合重庆工商大学教学实践情况,重点讲授重要的机器学习理论以及相关算法的实现。
《人工智能概论——基础理论、编程语言及应用技术(微课视频版)》从应用出发,系统介绍人工智能的基本理论、方法和技术,以及传统行业AI化改造的解决方案。全书共8章,内容涵盖人工智能概述、Python基础、机器学习、计算机视觉、语言识别、自然语言处理、知识图谱和人工智能行业解决方案。 《人工智能概论——基础理论、编程语言及
场景化机器学习
《人工智能简史》全面讲述人工智能的发展史,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,以宏阔的视野和生动的语言,对人工智能进行了全面回顾和深度点评。 第2版中每章都有新增内容,并增加了全新的第13章,
本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、小地覆盖机器学数学知识。包括微积分,线性代数与矩阵论,**化方法,概率论,信息论,随机过程,以及图论。本书从机器学角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识
本书首先概述人工智能、深度学习相关的基本概念和发展历程;然后详细介绍深度学习的基本理论和算法,包括神经网络的关键技术、卷积神经网络的主要框架和应用实例、循环神经网络和无监督学习深度神经网络的模型和应用、深层神经网络的参数优化方法、深度学习模型的轻量化方案以及移动端深度学习案例;之后阐述强化学习的基本理论和算法,包括传统
在《定性表征——人们如何推理和学习连续变化的世界》一书中,KennethD.Forbus提出,定性表征是认知科学非常深奥的关键内容之一——如何对我们周围连续变化的现象进行推理和学习。Forbus认为,定性表征是人类认知的核心,它将连续现象分解成有意义单元的符号化表征。定性表征为常识推理奠定了基础,因为它们可以用非常少的
大部分TensorFlow教材应用案例少,理论讲解比较概括,学生数学基础薄弱,对人工神经网络较难入门。本教材介绍TensorFlow的发展和特点后,通过案例详细介绍TensorFlow的使用,着重细致地讲解学生学习中遇到的难点,比如张量的形状、卷积、池化、交叉熵等。通过案例让学生逐层递进地掌握TensorFlow,最后
本书主要内容包括机器学习介绍,NumPy、Pandas、SciPy库、Matplotlib(可视化)四个基础模块,Scikit-learn算法、模型、拟合、过拟合、欠拟合、模型性能度量指标、数据标准化、非线性转换、离散化,以及特征抽取和降维的各种方法,包括特征哈希、文本特征抽取、特征聚合等。全书通过实用范例和图解形式讲