《人工智能基础(原书第2版)》把近年来AI发展历程中的重要事件一一进行了梳理,不仅回顾了AI的诞生、发展,还详细归纳整理了当前AI研究的核心问题—规划、推理、机器学习等,又在此基础上对人工智能未来的发展方向给出了一定的预期,包括分布式AI及进化计算等方面,很好地回答了所谓“人工智能的基础究竟是什么”这一问题。本书内容直
本书主要介绍了Google云平台中有关机器学习的多种工具,以及如何使用它们来进行机器学习。这些工具对使用者在机器学习理论方面的要求很低,读者可以在仅了解一点有关机器学习基础知识的前提下使用它们。本书在使用每种机器学习的工具或技术之前,都会对相应的理论进行较为详实的介绍。但也同时考虑了机器学习理论的复杂性,在对理论知识的
本书系统地介绍了人工智能的基础知识、核心技术、近年来的发展,以及在金融领域的应用情况。全书分为上下两篇,共14章。上篇为人工智能基础理论,内容包括人工智能概述、智能搜索技术、博弈决策、确定性知识表示及知识推理、不确定性推理、机器学习、计算智能、智能主体技术;下篇为人工智能的应用,内容包括面向金融领域的信息抽取、面向金融
本书在“科学技术社会学”框架下,从多学科交叉的管理综合角度将物联网、物联网社会与治理创新研究贯通起来,全面、系统地分析物联网、物联网社会及其治理逻辑等元问题,从技术和经济治理、文化治理、风险治理、民众参与治理等方面创新物联网新时代物联网社会的治理理论与实践。
本书从深度神经网络和AI芯片研究现状出发,系统地论述了目前深度学习主流开发平台和深度神经网络基于FPGA平台实现加速的开发原理和应用实例。全书主要包括5部分:第1~2章介绍了深度神经网络的发展,并总结了深度学习主流开发平台和AI芯片的研究现状;第3~6章在对深度神经网络基础层算子、FPGA进行了介绍后,总结了FPGA神
本书以深入浅出的方式,讲解何为“人工智能”,如何掌握以深度学习为代表的人工智能相关方法,以及如何进行落地应用。本书从理论、工具基础讲解开始,层层递进,分别向读者清晰地展现了卷积神经网络、生成式对抗网络、循环神经网络、深度强化学习的知识脉络与方法原理。同时,按照具体应用场景,结合主流深度学习框架,给出所讲述理论的落地应用
AI会取代我们吗?清晨,智能手环将你叫醒;上班路上,导航地图为你规划最佳路线;工作中,搜索引擎为你推荐最佳结果,输入法为你纠正拼写错误;晚上在家,视频网站根据你的喜好推送节目,购物应用会猜测你的需求展示商品。过去的六十年里,人工智能飞速发展,如今已深入我们的日常生活。曾经只在科幻电影中出现的无人驾驶汽车、脑机接口、类人
本书共11章,主要介绍机器学习的基本概念和两大类常用的机器学习模型,即监督学习模型和非监督学习模型。针对监督学习模型,本书介绍了线性模型(线性回归、Logistic回归)、非线性模型(SVM、生成式分类器、决策树)、集成学习模型和神经网络模型及其训练;针对非监督学习模型,本书讲解了常用的降维技术(线性降维技术与非线性降
人工智能将引领一场比互联网影响更为深远的科技革命,各领域的企业都需要尽早地将人工智能纳入企业规划路径中。在人工智能革命的时代,企业应如何应对挑战、如何调整企业发展方向,以及如何重塑企业运营模式和管理制度,从而在人工智能的浪潮中获得机遇。作为个人,我们又应如何面对未来人机协作的工作模式,如何在未来的工作环境中寻找适合自己
全书首先概要介绍了传统语音识别理论和经典的深度神经网络核心算法。接着全面而深入地介绍了深度学习在语音识别中的应用,包括"深度神经网络-隐马尔可夫混合模型”的训练和优化,特征表示学习、模型融合、自适应,以及以循环神经网络为代表的若干先进深度学习技术。