本书简明扼要地阐述了人工智能的基本原理,勾画了人工智能理论和技术体系的基本框架,内容涵盖了人工智能各个分支领域的基本知识和主要内容,并体现了人工智能的最新进展。本书内容基础、简明、新颖,为读者进一步学习和研发提供了入门知识,并指引了方向。本书结构风格独特、新颖,条理清楚,语言精练,图文并茂,理例结合,深入浅出,易读易懂
本书涵盖人工智能学科的大多数领域,共分为十一章。第一章绪论,介绍人工智能的历史、最新发展状态及所包含的领域。剩余十章分别介绍各领域的基本原理与技术,包括知识表示与逻辑系统、搜索与自动规划、不确定性推理、机器学习,以及近年快速发展的人工神经网络(深度学习)、强化学习、分布式人工智能与多智能体系统、平行智能、知识自动化、智
内容简介 本书由百度官方出品,百度公司CTO王海峰博士作序,张钹院士、李未院士、百度集团副总裁吴甜联袂推荐。 本书遵循“内容全面、由浅入深、注重实践”的原则,基于飞桨PaddlePaddle深度学习平台,较为全面地覆盖了学习深度学习技术所必须具备的基础知识以及深度学习主要核心技术,包括相关的数学基础、Python编
《人工智能导论第2版》系统地阐述了人工智能的基本理论、基本技术、研究方法和应用领域,全面地反映了人工智能研究领域的发展,并根据人工智能的发展动向对一些传统内容做了取舍,如详细介绍了机器学习方面的内容。《人工智能导论第2版》共分为8章,内容涉及人工智能的基本概念、知识工程、确定性推理和不确定性推理、搜索与优化策略、机器学
人工智能已经上升到了国家战略层面的高度。面对人工智能发展的浪潮与需求高等教育应主动变革,围绕国家人工智能出台的规划和政策,加快促进人工智能技术人才培养。本书以优化知识结构、培养10项能力为出发点,以实施素质教育、培养学生具有新一代人工智能应用意识为目标,以培养学生创新精神、创业能力为重点,以企业人才需求构建新的知识体系
本书从全新的视角诠释了机器学习的基本模型和算法,重点讨论了当前的两项研究热点——神经网络和核方法。全书紧紧围绕从环境约束中学习的概念,将符号知识库作为约束集合,通过采用多值逻辑形式的思想,实现了约束方法与机器学习的深度融合。特别是对深度学习的讲解,很好地呈现了本书中所遵循的基于约束的方法。此外,本书还提供不同难度等级的
本书由机器学习安全领域的学者撰写,针对存在安全威胁的对抗性环境,讨论如何构建健壮的机器学习系统,全面涵盖所涉及的理论和工具。全书分为四部分,分别讨论对抗机器学习的基本概念、诱发型攻击、探索性攻击和未来发展方向。书中介绍了当前*实用的工具,你将学会利用它们来监测系统安全状态并进行数据分析,从而设计出有效的对策来应对新的网
本书以理论和实践相结合的形式深入浅出地介绍强化学习的历史、基本概念、经典算法和一些前沿技术,共分为三大部分:第壹部分(1~5章)介绍强化学习的发展历史、强化学习的基本概念以及一些经典的强化学习算法;第二部分(6~9章)在简要回顾深度学习技术的基础上着重介绍深度强化学习的一些前沿实用算法;第三部分(*后一章)以五子棋为例
本书从基础知识入手,详细讲解通过强化学习和深度学习构建AI系统所需的一切,并通过5个完整的项目实例,循序渐进展示如何使用*佳、*简单的AI编程工具(包括Python、TensorFlow、Keras和PyTorch)构建智能软件。具体内容包括AI工具包、Python基础、AI基础技巧、你的第一个AI模型、销售和广告中的
本书重点研究机器学习的数学理论。第壹部分探讨了在非凸优化问题中,选择梯度下降步长来避免严格鞍点的*优性和自适应性。在第二部分中,作者提出了在非凸优化中寻找局部极小值的算法,并利用牛顿第二定律在一定程度上得到无摩擦的全局极小值。第三部分研究了含有噪声和缺失数据的子空间聚类问题,这是一个由随机高斯噪声的实际应用数据和/或含