本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数
数理逻辑是离散数学的重要组成部分之一,是计算机科学的数学基础。《数理逻辑引论(修订版)》内容主要侧重于逻辑演算,即命题逻辑演算和一阶谓词逻辑演算,这些内容是构成数理逻辑其他分支的共同基础。全书共分5章,分别介绍了数理逻辑的研究对象、研究内容和研究方法;命题逻辑的基本概念、命题逻辑演算形式系统的组成、基本定理及其性质定理
作者根据多年的数学建模教学与竞赛辅导的经验编写本书,内容包含了初等模型、规划模型、随机模型、统计模型、图论、模糊数学、灰色预测以及Matlab的使用简介等,同时引入近年的竞赛实例进行案例分析,从而增强模型的实用性。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计
导语_点评_推荐词
UMAP数学建模案例精选(一)
本书是作者在长期主讲山东大学“数学建模”通识教育核心课程的基础上,参考国内外优秀数学建模教学和培训教材,结合作者多年的教学实践经验,经过反复筛选和精心组织编写的通识教育教材。全书编写力求简洁、贴近实际。内容设计以问题驱动为先导,着重介绍数学建模的基本概念,日常工作、生活和科学研究中最常用的数学建模方法,如差分、微分、插
MCM/ICM数学建模竞赛(第2卷)(英文版)Mathematical Modeling for the MCM/ICM Contests Volume 2
本书共六章,其中第一章主要介绍集合、集合运算的基本思想和方法,第二至四章介绍命题逻辑的基本思想和方法,第五章和第六章介绍狭谓词逻辑的基本思想和方法。本书各章联系紧密,选材适当,体系完整,论述准确,并建立在作者新的研究成果基础之上,对数理逻辑的基本思想和方法做了准确而严谨的论述。