作者从事长期从事“高等数学”“线性代数”“概率统计”等大学数学类课程的教学与研究,教学30多年,有丰富的教材编写经验。本书主要内容有:第一章行列式、第二章矩阵、第三章线性方程组与向量组的线性相关性、第四章特征值和特征向量矩阵的相似对角化、第五章二次型。每章后配有思维导图和习题,书后有习题解答。书中配有二维码,读者可扫码
GilbertStrang是麻省理工学院数学教授,美国国家科学院院士和美国艺术与科学院院士,在有限元理论、变分法、小波分析及线性代数等领域卓有成就,著有多部经典数学教材,开设多门开放式课程,享有国际盛誉。本书是深度学习的导论,全面介绍机器学习的数学基础,阐述架构神经网络的核心思想,主要内容包括线性代数的重点、大规模矩阵
"本书是普通高等教育“十一五”国家级规划教材。为便于读者更好地理解,本书在第2版基础上进行了更新:调整了章节顺序,更新了部分例题、证明表述。本书分为集合论、初等数论、图论、组合数学、代数结构、数理逻辑等6个部分,既有严谨、系统的理论阐述,也有丰富的、面向计算机科学与技术发展的应用实例,同时配有大量的典型例题与练习。各章
"本书介绍了图与网络的基本概念与核心内容,其中,核心内容有连通性、欧拉问题与哈密顿圈问题、平面图与着色问题、拉姆齐数与随机图等。包括的经典算法有最小支撑树和最短路算法、网络流算法与匹配算法。本书在内容上注重理论与实例相结合,也注重将一些现代学科的应用融入相应的章节,如信息学、生物医药、人工智能、编码设计、芯片设计等。在
本书依据高等学校经济管理类本科数学基础课程教学基本要求,在总结线性代数课程教学改革成果,吸收国内外同类教材的优点,结合我国高等教育发展趋势的基础上编写而成,以突出数学思想、强化概念理解、注重思维发展、培养数学能力、体现教育理念、提高教学质量为根本,力求实现课程内容与数学思想相促进、知识传授与能力培养相融合、理论教学与实
本书在全面介绍组合数学基础、母函数、递推关系、容斥原理、抽屉原理、基于群论的图染色问题的基础上,还介绍了组合优化、组合算法、编码理论等。全书共分为10章:第1-2章介绍组合数学的基础;第3章着重讨论了两种不同类型的母函数及其应用;第4章介绍了递推关系及两种典型数列在组合计数中的应用;第5章着重讨论了容斥原理在集合计数中
本教材共分为7章:行列式、矩阵及其运算、向量空间、线性方程组、特征值与特征向量、二次型和线性空间与线性变换,内容涵盖了线性代数科目的基本部分。编者对教材内容进行了仔细斟酌、反复修改及完善,使本教材内容经典、体系完备、结构合理、重点难点叙述详尽、通俗易懂,特别是课程思政方面,案例涵盖面广,形式丰富,主要有:课题引出融入、
线性代数是大学数学的一门重要基础课程,也是自然科学和工程技术各领域中广泛应用的数学工具。本教材根据高等院校线性代数教学大纲要求编写而成的,不仅介绍了线性代数的相关概念、理论、方法等基础知识,还介绍了线性代数在实际生活中的应用.本书共分六章,包括行列式、矩阵、向量组与向量空间、线性方程组、相似矩阵和二次型、线性空间与线性
本书内容讲述:线性代数是大学本科阶段理工科、财经类各专业必修的课程,其研究的对象、涉及到的基本思想与解决问题的方法都不同于高等数学,导致学生学习该课程有一定的难度。基于此,宋浩老师带领多年讲授该课程的老师们共同编写了这本《线性代数讲义》。
本书从模糊集合的基本概念和性质入手,深入讨论了模糊模式识别、模糊关系与模糊映射、模糊逻辑和推理、模糊聚类与分类、模糊决策分析、模糊优化技术,以及模糊系统的建模方法,最后探讨了模糊数学在各领域的应用。模糊数学是一种以隶属度和不确定性为基础,能够描述和处理模糊、不确定和不完全信息的数学工具。通过这本书,读者可以全面理解模糊