本书是为报考数学类专业硕士研究生的本科学生编写的。全书按专题选讲的形式编写,包括极限、一元函数的连续性、一元函数微分学、一元函数积分学、无穷级数、多元函数微分学、广义积分与含参量积分、多元函数积分学八章。每章配有一定量的典型练习题,其中的例题、习题大都精选自部分高校硕士研究生入学考试的试题或由平时教学积累、相关资料整理
本书主要以两个函数和的最小化问题为研究对象,借助Moreau包络函数和广义渐近投影算子的性质,将Hilbert空间中的前后分离迭代算法推广到Banach空间。并研究相关算法的收敛性及收敛速度。本书主要包括以下内容:在Banach空间的框架下研究广义渐近投影算子的基本性质,作为性质的直接应用,构造算法去求一类变分不等式问
本书是分析学课程著作的第三卷,涵盖了每个数学家都必须要研究的两个主题,讨论了勒贝格的积分理论和实变量的实值函数理论中的第一个结果,介绍了一个复变量的复值函数理论——习惯上简称为“函数理论”。实值函数、傅里叶分析、函数分析、动力系统理论、偏微分方程或变分法的高级理论等也都在本书中有所提及。
本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。
《微积分》(第7版)共分七章,其中第一章—第五章介绍实际工作所需要的一元微积分知识,包括函数与极限、导数与微分、导数的应用、不定积分、定积分,第六章二元微分学与第七章无穷极数(根据学时数)作为选学内容,初等数学知识作为附录列在书末。本书着重讲解基本概念、基本理论及基本方法,培养学生的逻辑思维能力、熟练运算能力及解决实际
近年来,在图像处理与强度可调辐射疗法的实际应用背景下,分裂可行性问题成为近期非线性分析的研究热点之一。本专著从三个方面研究分裂可行性问题与广义分裂可行性问题(分裂公共不动点问题、分裂变分不等式问题和分裂公共零点问题)解的迭代逼近。主要体现在新算法设计、空间扩展和参数减弱限制条件等方面。对于丰富和扩展分裂可行性问题相关理
本书详细介绍小波变换的起源、原理和应用,内容覆盖傅里叶变换、窗口傅里叶变换、框架理论、连续小波变换、多分辨率分析、Daubechies正交小波、小波包、小波提升理论以及小波在信号处理和图像处理等方面的应用,涵盖了发展比较成熟的小波分析的所有基本内容。另外,本书特别关注实际应用和数学理论之间的关联,强调解决实际问题中的数
本书是高等学校数学类各专业或相近专业类的基础课教材。为适应新时期教学与改革的需要,编者经过长期教学实践的总结和系统研究,对数学分析课程理论体系、内容、观点、方法做了合理的编排。全书分上、下册。本书为上册,内容包括函数、数列极限、函数极限、函数连续性、一元函数微分学、中值定理及其应用、一元函数积分学、定积分的应用等,书末
"本书是海外优秀数学类教材系列丛书之一,从培生出版公司引进。本书在北美地区是微积分课程最畅销教材之一,已是第14版。本书历经多年教学实践检验,内容翔实,叙述准确,对每个重要专题均用语言的、代数的、数值的、图像的方式予以陈述。本书有众多反映应用微积分应用的教学实例,例题、习题贴近生活实际。本书分上、下两册出版。上册主要内