代数几何是数学中*古老和发展比较快的学科之一,它与投影几何、复分析、拓扑学、数论以及数学领域的其它分支有着紧密的联系。然而近些年代数几何不论是风格还是语言都发生了巨大的变化,本书展示了相关理论的主要研究结果和计算工具的发展。本书有如下特点:(1)本书以研究具体几何问题和特殊类代数簇为中心来展开。(2)注重实例的复杂性与
在本书中,作者通过大量例题,极为详尽地讲述了在独立研究规范理论时所必需的一系列原理、技术和应用,以及它在几何和拓扑学中的应用。书中包括对大多数单连通代数曲面的Seiberg-Witten不变量的完整且自足的计算,其中仅仅使用了Witten的分解法。书中还给出了剖分和粘贴Seiberg-Witten不变量的一个新方法,并
本书的第一部分专门介绍了黎曼流形之间调和映射理论的各个方面。第二部分提出了一些尚未解决的问题,并给出一些评注和参考文献,这些评注和参考文献的难度差别很大。本书首次在定性层面阐述了调和映射。Thefirstpartofthebookisdevotedtoanaccountofvariousaspectsofthetheo
本书是作者在清华大学讲授的研究生课程“代数几何I”的讲义。每次伴随着课程的讲授,作者都要修订讲义。经过四五次的锤炼之后,作者终于决定出版此书。交换代数和代数几何是密不可分的,因此阅读本书需要一些交换代数的预备知识。通过学习代数几何不仅仅学习了交换代数,还学习了从几何角度思考交换代数。
好玩的几何系列包含《和线条玩耍吧》《和平面图形玩耍吧》《和游戏拼图玩耍吧》3本书,本套书获得*学习素材大赛(BELMAcompetition)铜奖,该大赛由法兰克福书展、IARTEM(教材与教育素材国际研究协会)、EEPG(欧洲教育出版集团)联合举办。 本套书用*适合零基础的孩子学习几何的方法涂色、找规律、拼图、七巧板
好玩的几何系列包含《和线条玩耍吧》《和平面图形玩耍吧》《和游戏拼图玩耍吧》3本书,本套书获得欧洲*学习素材大赛(BELMAcompetition)铜奖,该大赛由法兰克福书展、IARTEM(教材与教育素材国际研究协会)、EEPG(欧洲教育出版集团)联合举办。 本套书用*适合零基础的孩子学习几何的方法涂色、找规律、拼图、七
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
Thisbookdiscussestheapplicationofindependentcontinuousmappingmethodinpredictingandtheoptimizationofthemechanicalperformanceofbucklingwithdisplacement,stressands
微分拓扑学有三个主要的研究领域:纤维丛、复流形和微分流形。本书对应用于微分流形和微分映射研究的拓扑学,对其基本思想作了全面的介绍,书中体现了作者的独特简明风格和独立的观点。取材得当,结构清晰,例题精彩,习题丰富,并尽量不使用代数拓扑的方法而是把几何分析内容提炼成一些数值不变量入手。目次:①流域和映射,②函数空间,③横割