本书为学术著作。特征值问题是工程数学和理论物理学的中心问题之一。本书主要从特征值的下谱界和多网格离散两个重要角度探索和发展特征值问题的有限元求解,主要阐述了变系数二阶椭圆及Stokes算子的渐近下谱界、Steklov特征值问题的渐近下谱界、流体力学中特征值问题的可保证下谱界、重调和特征值问题Ciarlet-Raviar
AlainChillès为上海交通大学教授,主要研究领域为数学和计算科学。本书为“中法卓越工程师培养工程丛书”之一。本书主要内容为高等数学数列与级数理论,包括数列的定义、分类,数列与函数,级数的概念与性质,运算法则,特殊级数展开等。全法语地向读者展示法国工程师预科基础阶段的高数教学。本书适合有一定法语及高数基础的理工科
本书共分6章,具体内容包括:散射势,散射的障碍,亥姆霍兹方程的对称问题,席费尔(Schiffer)猜想的证明、蓬佩尤(Pompeiu)问题的解以及其他偏微分方程的对称问题,满足NS方程的v的积分方程的解,积分方程解的唯一性,解的唯一性的证明,卷积和分布的正性,势论的反问题等。
本书共分为8章,第1-5章为复变函数内容,包括复数、复变函数、复变函数的积分、级数、留数;第6、7章为积分变换内容,包括傅里叶变换、拉普拉斯变换;第8章为复变函数的MATLAB基本操作.每节配有相关的实际应用问题;每章配有相应习题及数学文化赏析,数学文化赏析主要介绍对本章内容有突出贡献的数学家;书后配有习题答案和3个附
本书介绍了肥皂膜实验、极小曲面方程、曲面的面积、曲面的曲率、极小曲面的Weierstrass公式、经典极小曲面的Weierstrass表示、极小曲面的一般性质、Plateau问题、极小曲面的Bernstein定理、完备嵌入极小曲面的新例子。深入浅出,很有趣味性及科普性,适合数学爱好者。
本书为“中法卓越工程师培养工程”系列教材之一。全书共五章,主要内容包括常数项数列、常数项级数、幂级数、函数项级数以及傅里叶级数等。书中对相关定理给出了详细的证明过程,且每章都配有例题和习题供读者参阅和练习。此外,本书还提供了大量的Wxmaxima和Python、sympy、matplotlib代码,方便读者理解书中内容
本书以反散射理论、Riemann-Hilbert(RH)方法和非线性速降法为工具,系统分析散焦NLS方程在有限密度初值下解的长时间渐近性和孤子分解,主题部分取材于Cuccagna,Jerkins和作者**研究成果。内容主要包括散焦NLS方程初值的RH问题表示、RH问题的可解性、在孤子区域中的孤子分解和在无孤子区域中的长
《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分
"本书是一本英文专著,主题为偏微分方程的控制,内容由该领域的多位专家合作编写而成,既包含非常基础的内容,同时也包含了最新的研究进展。内容涉及:Carleman估计及其应用,饱和边界镇定性,随机微分方程的状态观测,耗散系统的渐近同步等,可供数学物理等相关专业的广大师生和科研人员使用参考。本书主要源自中法应用数学国际联合实
郭柏灵论文集第十六卷收集的是郭柏灵先生发表于2018年度的主要科研论文,涉及的方程范围宽广,有确定性偏微分方程和随机偏微分方程,研究的问题包括适定性、爆破性、渐近性、孤立波等等。这些论文具有很高的学术价值,对偏微分方程、数学物理、非线性分析、计算数学等方向的科研工作者和研究生,是极好地参考著作。