本书的第一部分介绍了代数群概形的表示论。在这里,作者描述了重要的基本概念:诱导函子,上同调,商,Frobenius核,modp约化,等等。第二部分致力于约化代数群的表示论并包括了对诸如单模、消灭定理、Borel–Bott–Weil定理和Weyl特征标公式以及Schubert概形和它上面的线丛等的描述。这是对这本现代经典
J-全纯曲线理论自其由Gromov于1985年引入以来,已经变得非常重要。在数学中,它的应用包括许多辛拓扑中的关键结果。它也是创立Floer同调的主要灵感之一。在数学物理中,它提供了一个自然的语境用以在其中定义镜像对称猜想的两个重要成分——Gromov-Witten不变量和量子上同调。
《数学名著译丛:代数几何》使用概型和上同调等现代数学的方法讲述代数几何学。*章给出代数簇的基本概念和例子,第二、三章讨论概型和上同调方法,*后两章研究代数曲线和代数曲面。《数学名著译丛:代数几何》结构合理,论述严谨,每节后有大量的习题。《数学名著译丛:代数几何》可供高等院校数学系高年级学生、研究生和教师阅读。
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至必备的。 《现代数学基础丛书:交换代数与同调代数(第2版)》针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中*
《Beatty定理与Lambek-Moser定理/现代数学中的著名定理纵横谈丛书》从一个拣石子游戏开始来介绍贝蒂定理与拉姆贝克一莫斯尔定理,并配有多道经典试题。《Beatty定理与Lambek-Moser定理/现代数学中的著名定理纵横谈丛书》适合大中学生及数学爱好者参考阅读。
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些著名问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
本书通过画图的事情,谈数学之有趣与有用。以计算机绘图为背景,围绕着到底什么是图、怎样画图、如何理解图等问题,讨论若干数学思想与数学技术的重要作用,与读者一起,在纷繁杂陈的图形世界里体会数学之美。本书介绍插值、拟合、迭代、随机等数学技术。就“记数法”的话题,谈数与形的关联与转化;就“数学变换”的话题,谈计算机上能对图像作
本书叙述通俗易懂,处处讲道理并且把道理讲得清清楚楚,注重基础性与实用性,强调数学思维方式。全书以研究几何空间的结构和图形的性质、分类为主线,运用旋转、压缩、正投影等变换研究图形的性质。每道习题都有详细解答。全书分5章,内容包括几何空间的结构、几何空间中的平面和直线、几何空间中的曲面和曲线、坐标变换、二次曲线的类型和不变
在微分几何和拓扑学中,人们常常处理微分方程组和偏微分不等式,它们不管加上什么边界条件总有无穷多个解。在1950年代人们发现,这种类型的微分关系(即等式或不等式)的可解性常常可以化为一个纯粹的具同伦论性质的问题。在此情形下人们说:相应的微分关系满足h-原理。h-原理的两个著名例子是:黎曼几何中Nash-Kuiper的C1
度量几何是建立在拓扑空间长度概念基础之上的处理几何的方法,这种方法在*近几十年飞速发展,并渗透到诸如群论、动力系统和偏微分方程等其他数学学科。这本研究生教材有两个目标:详细阐述长度空间理论中使用的基本概念和技巧,以及更一般地,为大量不同的几何论题提供一个初等导引,这些论题都与距离观念相关,包括黎曼度量和Carnot-C