抽象代数:群、环与域的应用导论 第二版(英文)
本书可以分为三个部分:基础、理论和应用。第1~4章对拟群理论和拟群的主要类别进行了充分的基本介绍,第5~9章介绍了过去20年来主要在“纯”拟群理论分支中得到的一些结果,第10章和第11章收集了有关拟群在编码理论和密码学中的应用信息。
本书包含了,对称群与对称函数、赫克代数及其表示、划分的可观测、随机杨氏图的模型等四部分,其中包含了,有限群的表示与半单代数、对称函数与弗罗比尼乌斯-舒尔同构、划分与表的组合、赫克代数与布饶尔-嘉当(Brauer—cartan)定理、赫克代数的特征与对偶、q-0时的赫克代数特殊化的表示、可观测的伊万诺夫-克罗夫代数、朱西
线性代数是高校本科生的基础课程,不禁为后续课程的学习提供必要的数学基础,也在物理化学、工程技术、经济金融、运筹规划、数据科学等诸多领域中具有广泛的应用。本教材为作者给南开大学的物理专业和化学专业本科生讲授《线性代数》课程的讲义,以矩阵为主线,简要讲述了线性代数的最近本的理论与知识,主要内容包括线性方程组、向量空间、矩阵
ThepurposeoftheHandbookofDiscreteandCombinatorialMathematicsistoprovideacomprehensivereferencevolumeforcomputerscientists,engineers,mathematicians,aswellasstude
本书共五章,第一章主要介绍了行列式的基本概念、性质、计算和应用。第二章介绍了矩阵的概念及运算、分块矩阵、逆矩阵、矩阵的初等变换、矩阵的秩等基础知识。第三章讨论了消元法解线性方程组、n维向量的线性关系、向量组的秩、线性方程组解的结构,并在此基础上,介绍了线性方程组在经济模型中的应用——投入产出数学模型。第四章在介绍了方阵
本书共七章,分别介绍了n阶行列式、矩阵、n维向量与向量空间、线性方程组、矩阵的特征值与二次型、线性空间与线性变换、应用数学模型。每章后均有小结,并除第七章外均配有大量的习题,书后附有参考答案和多年考研真题。本书仍保持了第1版结构严谨、逻辑清晰、叙述详细、通俗易懂、例题典型、习题丰富、便于自学等优点。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代
数论是研究整数性质的一个重要数学分支。本书向读者介绍了整数的整除理论、同余理论、不定方程和原根、指标与数论函数等的基础知识和常用方法。本书主要分为5章,为方便中学生学习数论,每章均配备了初等而有趣的应用问题,即中学数学竞赛中的数论题目。本书既可作为高等院校数学专业的教学用书,也可作为对初等数论感兴趣人员的参考用书。
本书从算法框架入手,建立系列非负矩阵分解模型的抽象数学模型,即非负块配准模型,从统一的角度分析现有的非负矩阵分解模型,并用以开发新的非负矩阵分解模型。根据非负块配准模型的分析,本书提出非负判别局部块配准模型,克服了经典非负矩阵分解模型的缺点,提高了非负矩阵分解模型的分类性能。为了克服经典非负矩阵分解的优化算法收敛速度慢