本书第一版是在吴光磊编《空间解析几何》和吴光磊、田畴编《平面解析几何补充教程》的基础上编写而成,简明而适于教学。本次修订仍然保持了这一风格。主要体现在以下两个方面:一方面是附录Ⅱ射影几何部分,增加了描述性语言的内容,部分内容进行改写,特别是射影平面及空间与普通平面及空间的比较和联系,克服了从公理系统出发讲授几何,内容抽
Thisbookintendstoleaditsreaderstosomeofthecurrenttopicsofresearchinthegeometryofpolyhedralsurfaceswithapplicationstocomputergraphics.Themainfeatureofthebookisas
空间解析几何是数学专业学生必修的一门基础课,也是为数学分析、高等代数、微分几何和力学等课程提供必要知识一门课程,本书是参照高等师范院校解析几何教学大纲编写的,它可供师范院校、教育学院,函授师范大学等作为教材或参考书。 本书编写时,我们注意力求取材适度,循序渐进,论述详细,条理清楚,论证严谨。全书共分四章,第一章讲向量
本书阐述了新型矢-栅紧密结合型数据模型:“矢量为体,栅格为用;矢栅互换,利用长处”,从而铺垫了解算复杂空间问题的“0”初始化计算途径;提出了地图代数的ESPO方法。
Thisbookgivesthebasicnotionsofdifferentialgeometry,suchasthemetrictensor,theRiemanncurvaturetensor,thefundamentalformsofasurface,covariantderivatives,andthefund
本书是莫斯科大学数学力学系对几何课程现代化改革的成果。作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求从直观的和物理的视角阐述,内容包括张量分析,曲线和曲面几何,一维和高维变分法(第一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求从直观的和物理的视角阐述,内容包括张量分析,曲线和曲面几何,一维和高维变分法(第一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
《黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,
本书在介绍度量空间之后,引入拓扑空间,然后叙述拓扑空间的连续映射和同胚、紧致性、连通性、乘积空间和商空间;从单形入手介绍单纯复形和多面体的概念和性质、重心、重分和单纯逼近存在定理;基本群定义及其同伦等价不变性、计算方法和一些计算结果的应用;在单纯同调群之后介绍奇异同调群及其同伦等价不变性、同调群的正合序列、切除定理。第
《空间解析几何》系统地介绍了空间解析几何知识。由于矢量理论为研究几何提供了一个十分有利的工具,在某些科技领域中也经常应用这一工具,借助矢量的概念砥使几何更便于应用到某些自然科学与技术领域中去,因此,在第1章介绍空间坐标系后;紧接着在第2章介绍了矢量的概念及其代数运算。第3章讨论空间直角坐标系中用一次方程表示的图形(直线