《离散数学(第4版)》是为高等学校电气信息类、数学类、计算机类专业学习离散数学而编写的教材。主要内容是:集合论基础、数论基础、命题逻辑、一阶逻辑、关系、函数、图论基础、特殊图、基本计数方法、递推关系和生成函数、代数结构基础、群、环和域、格和布尔代数。
本书共六章,包括行列式、矩阵、向量空间、线性方程组、二次型、线性空间与线性变换。对非考研学生,第6章作为选学内容。针对不同学校、不同专业线性代数课程学时不同的情况,书中部分内容用楷体字呈现,教师可根据学时情况和学生接受程度酌情取舍,这样既降低了学生的学习难度,也使得学习主线清晰简单,内容易懂好学。书中配有各层次的例题和
近年来,随机矩阵论领域呈爆炸式发展,它与数学和物理学的许多领域都有联系。然而,这使得该领域的现状几乎无法在一《随机矩阵论(影印版)》中尽述。在这本研究生教材中,我们重点研究该领域的一个特定部分,即随机Wigner矩阵系综(例如Gauss酉系综)的谱分布,以及独立同分布矩阵系综的谱分布。《随机矩阵论(影印版)》很大程度上
近年来,用同调代数构建容许表示以及算术群方面的研究取得了巨大进展。第二版是第一版的修正和扩充,后者曾是拓展该领域的重要催化剂。除了第一版中有关上同调和离散子群的基本材料外,新版还包含了过去二十年中一些重要进展的说明。《连续上同调、离散子群与约化群表示,第二版(影印版)》适合研究连续上同调的研究生和数学家阅读。
《Hilbert第五问题及相关论题(影印版)》所有材料以统一的方式呈现,从实Lie群和Lie代数的分析结构理论(强调单参数群的作用和Baker-Campbell-Hausdorff公式)开始,然后给出局部紧群的Gleason-Yamabe结构定理的证明(强调Gleason度量的作用),由此得到Hilbert第五问题的解
《线性代数》是高等继续教育财经专业精品系列教材之一。该系列教材在使用范围和地域上,具有广泛的适应性。本教材共含六章内容,各章内容依次为:行列式、矩阵、向量组的线性相关性、线性方程组、矩阵的特征值与特征向量、二次型,其中,二次型为选学内容。
本书是根据理科本科学生所需要的代数基础知识组织编写的。从数的运算(包括计数)、集合和映射的具体性质讲起,直到抽象的空间和线性算子理论,囊括了多项式、行列式、线性方程组、矩阵运算、二次型、特征值与特征向量、欧氏环上的矩阵、矩阵的相似标准形、矩阵函数、线性空间、线性变换、内积空间、线性型与张量、仿射空间与几何等较为丰富的代
本书由《最强大脑》节目第二季和第三季人气选手、专业魔方教练孙虹烨倾力打造。永别了,复杂的魔方公式和口诀!若看完这本书还学不会魔方复原,就没人能帮你了!本书共三章:首先,讲述魔方的诞生、变化数及玩魔方的诸多好处;然后,详细叙述三阶魔方的入门玩法,即通过一个简单的手法进行魔方复原;最后,介绍三阶魔方的高级玩法,读者可在学会
离散数学是计算机科学与技术专业的一门重要基础课。全书共10章,主要包含数理逻辑、集合与关系、函数、组合计数、图和树、代数系统、自动机和初等数论等内容。新增应用案例,阐明相应章节的知识可以解决什么样的典型应用问题。本书“历史注记”可以帮助读者理解数学,洞察内在本质。本书体系严谨,选材精炼,讲解翔实,例题丰富,注重理论与计
本书入选“十三五”国家重点出版物出版规划项目,读者对象为经营类相关专业的学生,全书共6章,内容包括行列式、矩阵、向量与向量空间、线性方程组、特征值和特征向量、二次型.本书基于作者几十年教学经验,立足学生的实际学习需求,着眼线性代数在实际中的应用,由易到难,循序渐进,自成一体.本书结构严谨,条理清晰,每章辅以一定数量的典