矩阵是重要的数学工具,也是当今人工智能、机器学习等领域重要的数据处理对象。本书作为矩阵理论的教材,将由浅入深地介绍矩阵的基本理论,包括矩阵的概念与运算、线性方程组、线性映射和线性变换、行列式、向量空间、特征值和特征向量、相似矩阵、二次型等,还有这些基本理论在机器学习上的简单应用。此外在本书各章还附上了对应的Python
本书是根据普通高等学校教学指导委员会制定的新的本科数学基础课程教学基本要求编写的.全书共9章,内容包括:多项式、行列式、矩阵、线性方程组、线性空间、线性变换、欧几里得空间、二次型及MATLAB实验等.本书注重培养读者的逻辑推理能力,论证严谨而简明,内容由浅入深、条理清晰,充分体现教学的适用性.除第九章外,书中每节配有一
本书系统地论述了图谱理论的基本定义,基本定理和重要应用,深人介绍了图论中数种主要矩阵及其特征多项式,以及这些矩阵的谱(特征值及其重数)的规律与应用,其中涉及系统工程、电路和人工智能领域. 本书可作为研究生的学习用书,也可为相关领域的研究和开发人员提供理论参考
本书共6章,分为3部分。第1部分是数理逻辑,包括第1章命题逻辑和第2章一阶逻辑。第2部分是集合论,包括第3章集合代数、第4章二元关系和第5章函数。第3部分是第6章图论。每章均包含丰富的习题及部分习题的参考答案,针对重要的知识点设计了线上参考资源,包括教学课件和交互式可视化教学软件,读者可下载。
本书包括集合与关系、计数、数理逻辑、图论基础、再论图论和代数结构六章内容,介绍离散数学的基础知识。
《算术基础》是德国数学家、哲学家G.弗雷格的经典著作,也是数理逻辑与分析哲学的奠基之作。弗雷格试图从逻辑角度给数下严格的定义,他首先批判地考察了施罗德、密尔、洛克、莱布尼茨、贝克莱等人关于数的观点,并在此基础上提出自己的核心命题:数的陈述包含的是对概念的断言;每个数自身是独立自存的对象,数词表示的是专名;数不是主观的表
"内容第一部分数理逻辑部分,将选取生活中的逻辑案例和公务员考试题目为引入点,逐步分解数理逻辑中涉及到的命题、谓词、范式及推理理论。一方面可以弘扬优秀的中华传统文化,另一方面可以改变目前教材中的国外案例居多的状况。拓展环节能够对所选案例进行理论推导、Python程序实现并形成最终报告。第二部分集合论,通过学习集合论的经典
本书是为适应“新文科”背景下经管类专业大学数学教学的新要求,推进信息技术、数字经济与课程教材深度融合而编写的线性代数教材。主要内容包括矩阵与行列式、线性方程组、矩阵的特征值和特征向量、二次型、线性空间与线性变换,其中线性空间与线性变换为选学内容。本
代数标志着现代数学的开端,它使数学运算从基本的算术问题(以给定数字为特征的计算)发展到解决某些未知量的问题。现在,代数作为数学的支柱,支撑着社会科学和物理学的定量研究。本书从初步代数开始,在十个逻辑异常紧凑的章节中,希金斯为那些热衷于代数学习的读者提供了一个循序渐进的方法,运用理论和示例更新了读者对学校所讲授代数的认知