本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函
本书第1章至第6章为实变函数与泛函分析的基本内容,包括集合与测度、可测函数、Lebesgue积分、线性赋范空间、内积空间、有界线性算子与有界线性泛画等.第7章介绍了Banach空间中的微分和积分,第8章介绍了泛函极值的相关内容.本书循着几何、代数、分析中熟悉的线索介绍了泛函分析的基本理论与非线性泛函分析的初步知识。
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等.全书共分三册.本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与Fourier级数.书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,
《整函数与下调和函数:英文》内容来自在哈尔克斯大学举办的函数论研讨会参会者的研究论文。其中大部分论文是关于整函数和次调和函数的新研究成果。该书的出版将对函数论的学习和研究产生很大的影响,并且对于其他学科的学习具有促进作用。该书适合高等院校师生以及对函数论感兴趣的学者阅读收藏。
本书为韩山师范学院数学与统计学院选修课教材和考研参考书。全书以专题选讲的形式,选择了数列极限与函数极限、连续与一致连续、导数与微分、定积分、级数、一致收敛、多元微积分七个专题,每个专题介绍概念和理论,并重点选取了典型案例讲解,全书非常具有实用性,学生针对这七个专题,能进行针对性的案例学习,加深理解。
《工科数学分析》是“工科数学分析”或“高等数学”课程教材,分为上、下两册。上册以单变量函数为主要研究对象,内容包括函数、极限与连续,导数与微分,微分中值定理与导数的应用,定积分与不定积分,常微分方程等。下册侧重刻画多变量函数,从向量代数与空间解析几何开始,介绍多元函数微分学、重积分、曲线积分与曲面积分和级数等。《工科数
《微积分》共8章,前6章为一元函数微积分部分,包含一元函数连续、求导、积分及其应用,微分方程简介等内容;后2章为多元函数微积分部分,主要讲述多元函数偏导数及二重积分的计算等。
《工科数学分析(上册第二版)》可作为理工科院校对数学要求较高的非数学类专业本科生教材。通过这门课的学习,使学生系统地获得一元与多元微积分及其应用、向量代数与空间解析几何、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,为学习后续课程和知识的自我更新奠定必要的数学基础;在传授知识的同时,培养学生比较熟
《工科数学分析(第2版)》是以教育部工科数学课程指导委员会颁布的高等工科院校本科《高等数学课程教学基本要求》为纲,在多年开设工科数学分析课程的基础上,广泛吸取国内外知名大学的教学经验而编写的《工科数学分析》课程教材。它是一门重要的基础理论必修课,不仅包含了一般理工科“高等数学”的全部内容,而且加强和拓宽了微积分的理论基
本书针对应用科学中的11个重要的非线性发展方程,介绍差分求解方法的**研究成果,包括微分方程问题解的守恒性和有界性分析、差分方法的建立、差分解的守恒性和有界性分析、差分解的存在性分析、差分解收敛性的证明、差分格式的求解等内容。建立的差分求解格式包括非线性差分格式和线性化差分格式。这11个非线性发展方程如下:Burger