本书是人工智能和机器学习领域专业多年实践的结晶,深入浅出讲解机器学习应用和工程实践,是对机器学习工程实践和设计模式的系统回顾。全书分别从项目前的准备,数据收集和准备,特征工程,监督模型训练,模型评估,模型服务、监测和维护等方面讲解,由浅入深剖析机器学习实践过程中遇到的问题,帮助读者快速掌握机器学习工程实践和设计模式的基
本书是一本看懂计算机视觉的实战指南,使用理论与实践相结合的思想,真正一站式搞定理论学习、算法开发到模型部署上线。全书内容共分为四个部分。第一部分包括第1、2章,主要讲解深度学习和计算机视觉基础,如计算机视觉领域的经典网络和常见的目标检测算法;第二部分包括第3~6章,主要讲解图像处理知识,结合应用案例,对知识点进行分析说
本书以优化知识结构、培养解决问题的能力为出发点,以实施素质教育、培养学生具有新一代人工智能应用意识为目标,以培养学生创新精神、创业能力为重点,以企业人才需求构建新的知识体系为主线。全书共12章,分为3篇:智慧城市篇、智慧生产篇、智慧服务篇。分别以智慧安防、智慧交通、智慧楼宇、智慧政务、智慧能源、智慧商业、智慧制造、智慧
视频理解是计算机视觉和深度学习的一个重要分支。本书对视频理解的3个重要领域进行介绍,对于每个领域,本书不仅解释了相关算法的原理,还梳理了算法演进的脉络。全书共分6章,第1章简要介绍视频行业的发展历程;第2章回顾经典图像分类模型和RNN;第3章和第4章介绍动作识别的重要算法;第5章介绍时序动作定位的重要算法;第6章介绍视
随着无人系统在生产、生活中的广泛应用,未来智能无人系统必将朝着多域协同化发展。本书面向复杂、动态、多约束的地面与近地面作业场景,将无人车、无人机、水陆两栖无人船等平台自主导航技术进行统一整合,提出了一整套完整的陆上无人系统自主导航体系架构,并在该理论框架下详细介绍了无人系统自主导航过程中的若干核心关键技术。 本书可供
本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。全书分为五部分:第一部分以算法竞赛的通用流程为主,介绍竞赛中各个部分的核心内容和具体工作;第二部分介绍了用户画像相关的问题;第三部分以时间序列预测问题为主,先讲述这类问题的常见解题思路和技巧,
这是一本写给青少年看的人工智能科普图书,目的是启蒙科学素养,开阔科学视野,培养科学思维,锻炼动手能力,让小读者们了解人工智能的过去、现在和未来,从而更好地融入人工智能时代。通过阅读本书,小读者们不仅会了解到“存在这样那样的人工智能”,还会一睹很多人工智能发展的过程和细节:科学家如何提出问题并想到绝妙的点子,技术如何从第
本书基于谷歌的深度学习框架tensorflow,深入讲解其语法特点,以及使用方法,并在此基础上选取了图像领域的多个应用进行深入讲解,原理由浅入深,算法推导细致到位,结合大量的图片,以及运行中间结果,进行了细致的分析。 本书基于谷歌的深度学习框架tensorflow,深入讲解其语法特点,以及使用方法,并在此基础上选取了图
强化学习是实现决策智能的主要途径之一。经历数十年的发展,强化学习领域已经枝繁叶茂,技术内容纷繁复杂,这也为初学者快速入门造成障碍。本书是一本深度强化学习领域的入门读物。全书分为四部分。第一部分主要阐述强化学习领域的基本理论知识;第二部分讲解深度强化学习常用算法的原理、各算法之间的继承与发展,以及各自的算法流程;第三部分
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的最近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸
人的智能和AI赋能的机器智能在自动化控制领域的共融共存形成了人机混合智能系统这一新型的系统形式和智能形式。一方面,这类系统所代表的系统结构形式是传统自动化控制系统应对AI赋能的机器智能变革的必然发展形势;另一方面,它所代表的智能形式也成为AI未来发展的重要甚至是的终极形式。在本《人机混合智能系统自主性理论和方法》,我们
本书聚焦信息科学、生命科学、新能源、新材料等为代表的高科技领域,以及物理、化学、数学等基础科学的进展与新兴技术的交叉融合,其中70%的内容来源于IEEE计算机协会相关刊物内容的全文翻译,另外30%的内容由STEERTech和iCANXTalks上的国际知名科学家的学术报告、报道以及相关活动内容组成。本书将以创新的方式宣
全书从推荐系统的发展历史、基本构成开始,依次剖析推荐系统的内容召回、协同过滤召回、深度学习召回中具有代表性的模型;再从经典排序模型到基于深度学习的排序,顺势介绍会话推荐、强化学习推荐及工业级推荐,搭建了完整的推荐系统技术体系,这是一个由浅入深的系统学习过程。 本书的目标读者应该对深度学习有基本的了解,掌握概率论、线性代
机器学习已经广泛地应用于各行各业,深度学习的兴起再次推动了人工智能的热潮。本书结合项目实践,首先讨论主流机器学习平台的主要特点和机器学习的实战难点;在此基础上,利用主流的机器学习开源平台TensorFlow、OpenVINO、PaddlePaddle等,通过19个实战案例,详细地分析决策树、随机森林、支持向量机、逻辑回
本书主要介绍了人工智能的基础知识和实用技术。本书共8章,包括“人工智能:开启智慧新时代”“Python:人工智能开发语言”“线性回归:预测未来趋势”“分门别类:帮你‘分而治之’”“物以类聚:发现新簇群”“个性化推荐:主动满足你的需求”“语音识别:让机器对你言听计从”“人脸识别:机器也认识你”。 本书以培养学生人工智能素
本书从深度学习的发展历程开始,系统介绍了基于深度学习的目标检测的基本问题及其相关处理方法与技术,主要内容涉及两阶段和单阶段目标检测的理论、算法和研究成果。本书共6章,包括深度学习神经网络类型、目标检测技术、基于FasterR-CNN的目标检测改进算法、领域自适应及其在目标检测技术上的典型应用、图像识别模型改进及面部表情
本书分为十四个章节,分别从新智器时代降临、身边的智能应用、计算机真的有智能吗、智能来自何方、刷出你的脸、计算机视觉识别原理、机器识物、像人类一样学习、人工智能之棋艺、辩论赛、机器识字、智能管家、智慧校园、未来已来等方面介绍人工智能,以浅显易懂的语言,理论联系实际,向读者展示了人工智能的原理、应用和发展。人工智能在社会和
本书源于阿里巴巴千亿级知识图谱构建与产业化应用的工作总结,对知识图谱理论和大规模工业实践进行了全面和深入的阐述。本书以阿里巴巴的实战经验为中心,以深厚的理论成果为支撑,详细阐述了知识图谱的方方面面。首先介绍工业场景下知识图谱的现状、存在的问题和架构设计;然后从知识表示、知识融合、知识获取、知识推理、知识存储和知识图谱前
本书首先从人工智能的定义讲起,就人工智能的早期历史、思维和智能的内涵、新千年人工智能的发展进行了简要论述。第二部分详细讲述了人工智能中的知识表示、机器学习、神经网络与深度学习、智能语音技术、计算机视觉、自然语言处理和知识图谱技术等基础知识,并通过人工智能在医疗、交通、生活、金融、零售、安防中的经典的成功应用案例让读者更
本书是一本系统介绍机器学习所涉及的数学知识和相关Python编程的实例工具书,同时还介绍了非常经典的综合案例,除了编写机器学习的代码,还编写了深度学习的代码。本书一共分为两部分。 第一部分为数学基础知识部分,包含8个章节,介绍了微积分、线性代数、概率统计、信息论、模糊数学、随机过程、凸优化和图论的系统知识体系及几个数学