《人工智能导论》为大连理工大学“新工科”系列精品教材。本书内容包括绪论、知识表示、确定性推理、不确定性推理、搜索求解策略、遗传算法及其应用、群智能算法及其应用、人工神经网络及其应用、机器学习、专家系统、自然语言理解及其应用等。本书可供电子信息类专业本、专科学生作为教材使用,也可供从事人工智能领域的技术人员参考。
人工智能的迅猛发展,对整个人类、社会和时代的进步起到了不可估量的作用。然而,人工智能的未来奇点在哪儿?人工智能是否具有人类意识?人工智能会导致人类大规模失业吗?会替代人类吗?本书以通俗易懂的语言,图文并茂的方式不仅描绘了人工智能发展的历史、现状与未来,而且探讨了人工智能发展可能对经济、政治、军事、法律等方面的影响,其中
本书既可以作为相关专业本科生和研究生的学习用书,也可以作为广大科研人员、学者、工程技术人员的参考用书。
本书从传统的机器学习,如线性回归、逻辑回归、朴素贝叶斯、支持向量机、集成学习,到前沿的深度学习和神经网络,如DNN、CNN、BERT、ResNet等,对人工智能技术进行零基础讲解,内容涵盖数学原理、公式推导、图表展示、企业应用案例。本书面向初中级读者,能帮助读者迅速掌握机器学习技术的相关概念及原理。本书内容结合作者多年
本书是一本介绍深度学习理论和实战应用的教程,先从数学基础和机器学习基础出发,按照神经网络的技术发展框架由易到难逐步讲解深度学习的理论,然后再通过实践部分,详细解释深度学习的应用案例,让读者既能了解深度学习理论,又能学会使用深度学习框架,实现自己的深度学习模型。主要内容包括深度学习的发展历史、单层感知器、线性神经网络、B
本书全面讲解PaddlePaddleFluid框架在深度学习领域的应用。全书共15章,分别是PaddlePaddle深度学习开发环境的搭建、PaddlePaddle快速入门、线性回归算法实战、卷积神经网络实战、循环神经网络实战、生成对抗网络实战、强化学习实战、模型的保存与使用、迁移学习实战可视化工具VisualDL的使
本书的主要特色在于知识建模和智能推理技术方面的创新,并基于知识图谱建模和智能推理技术的集成完成了一系列应用软件的开发,直观形象、易学易用。本书是AI3软件的详尽解读,分为AI3普及版(自由拷贝,不限使用)、AI3智能教学版以及AI3专业版(适用于复杂过程工业系统AI应用)。
本书系统阐述迁移学习的解决方法和典型应用。首先,论述了迁移学习的基本概念、方法分类及发展历程,介绍了迁移学习的相关基础知识。然后,探讨了迁移学习的基本方法,包括基于样本、基于特征、基于模型和基于关系的迁移学习方法,阐述了深度迁移学习的经典方法,包括神经网络自适应迁移方法和神经网络对抗迁移方法,介绍了更加实用的部分域适应
机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并
本书以漫画形式讲解机器学习的基本概念和关键知识点,尽可能通俗易懂地讲解回归、分类、结果评价、深度学习、集成学习、无监督学习等的原理。本书内容基于大学一年级的数学知识,着眼于主人公们学习和工作中遇到的问题,探究机器学习解决方案。
本书旨在帮助老年朋友快捷、充分地使用智能手机,帮助老年人实现老有所乐、老有所为的美好愿望。本书以手机使用较为广泛的支付宝、微信等应用为例,从真实的操作环境出发,以图文并茂的方式讲解手机软件安装、注册、登录及手机多功能应用的操作方法,并针对老年人的行为习惯及智能手机使用特点进行优化解读,在功能较复杂之处还配有相对应的提示
迁移学习作为机器学习和人工智能领域的重要方法,在计算机视觉、自然语言处理、语音识别等领域都得到了广泛的应用。本书的编写目的是帮助迁移学习及机器学习相关领域的初学者快速入门。全书主要分为背景与概念、方法与技术、扩展与探索及应用与展望四大部分。除此之外,本书还配有相关的代码、数据和论文资料,最大限度地降低初学者的学习和使用
本书介绍了元学习方法的发展历史、起源、思想、近来流行的元学习方法,以及这些方法的组织思路、改进方案、相互继承、如何应用。本书共11章,分为两部分:元学习方法思想的介绍和元学习应用场景中模型的介绍。这些内容介绍了如何在元学习框架下融入强化学习、模仿学习、在线学习、无监督学习、迁移学习等,实现对实际应用中深度模型的改进,以
对从事人工智能算法研究与算法开发的人来说,模型的学习与使用必不可少。尤其是在目前如日中天的人工智能领域里,人人谈模型,模型也是层出不穷,让人眼花缭乱。本书将人工智能在现实生活场景中解决的问题分类,并根据这个分类来介绍各种人工智能模型。书中将人工智能问题分为权重问题、状态问题、序列问题、表示问题、相似问题和分类问题六大类
生成对抗神经网络(GenerativeAdversarialNets,GAN)作为一种深度学习框架,发展十分迅猛。通过相互对抗的神经网络模型,GAN能够生成结构复杂且十分逼真的高维度数据。因此,被广泛应用于学术研究和工程领域,包括图像处理,如图像生成、图像转换、视频合成;序列数据生成,如语音生成、音乐生成等;以及其他众
本书主要讲述人工智能的基础知识与基础理论,并通过大量的人工智能应用帮助读者快速了解人工智能相关技术。本书共10章,分别为人工智能概述、人工智能基础知识、机器学习、深度学习、计算机视觉、自然语言处理、知识图谱、人工智能技术应用场景、智能机器人和人工智能的挑战与未来。本书内容丰富,讲解细致,注重技术发展变化。 本书既可作为
本书主要根据作者近年来的研究成果,对网络嵌入表示学习技术进行梳理和总结,全书深入浅出地介绍了表示学习的基础理论,及其在网络对齐、地点推荐、电子健康记录挖掘等应用方面的前沿技术。具体包括:单/多关系网络表示理论与技术、基于单关系网络表示的社交网络对齐、基于多关系网络表示学习的知识图谱对齐、基于网络表示的电子健康记录挖掘、
本书以TensorFlow为平台,从神经网络到深度学习由浅入深进行介绍,书中每章都以理论引出,以TensorFlow应用巩固结束,做到理论与实践相结合,使读者快速了解神经网络、深度学习等内容,同时领略利用TensorFlow解决这些问题的简单和快捷。本书共12章,主要内容包括TensorFlow软件介绍、计算机视觉与深
数据孤岛和隐私保护已经成为制约人工智能发展的关键因素。联邦学习作为一种新型的隐私保护计算方案,在数据不出本地的前提下,能有效联合各参与方联合建模,从而实现“共同富裕”,成为当下人工智能领域备受关注的热点。本书以实战为主(包括对应用案例的深入讲解和代码分析),兼顾对理论知识的系统总结。全书由五部分共19章构成。第一部分简
创新工场于2017年发起了面向高校在校生的DeeCamp人工智能训练营(简称DeeCamp训练营),训练营内容涵盖学术界与产业界领军人物带来的全新AI知识体系和来自产业界的真实实践课题,旨在提升高校AI人才在行业应用中的实践能力,以及推进产学研深度结合。本书以近两年DeeCamp训练营培训内容为基础,精选部分导师的授课