线性代数是大学理工科和经管类学生的必修课程,在培养学生的计算能力和抽象思维能力方面起着非常重要的作用.本书以线性方程组为出发点,逐步展开论述矩阵、行列式、向量组及其相关性等概念,并引入许多实例供读者了解线性代数在实际应用中的独特作用,每章后还附有Matlab实验,供读者学习使用数学软件解决线性代数问题.
本书介绍学习矩阵论需要的基础知识如赋范线性空间、矩阵空间、$\lambda$矩阵、矩阵分析、矩阵微分方程、矩阵扰动分析和广义逆等矩阵论的基本内容,讲述这些内容的基本理论和计算方法.本书深入浅出,不要求读者具有高深的数学基础.在介绍内容的同时,注意体现数学的方法训练功能.
本书按照丛书理念,以线性方程组为出发点,逐步展开论述矩阵、行列式、向量组及其相关性等概念,并引入许多实例供读者了解线性代数在实际应用中的独特作用,每章后还附有Matlab实验,供读者学习使用数学软件解决线性代数问题
《实用线性代数方法》从思想、理论和应用3个方面阐述线性代数的主要内容。其中包括:矢量和线性空间的意义与作用,矩阵的概念与作用,线性方程组的解及其规律,矩阵特性与实用意义。《实用线性代数方法》可供相关高等院校理工科和经管类的学生以及相关专业的科技工作者等阅读、参考。
本书系统地论述了代数方程的Kuhn算法和增量算法(以Newton算法为其特例)、代数方程组和同伦算法以及同伦单纯轮迥算法。这些算法及其计算复杂性是应用数学领域中活跃的方向。本书作者按照由浅入深,从特殊到一般的原则,将这一方向的主要内容有机地组织起来,引导读者到此领域发展的前沿,因而本书是一本较为理想的入门读物。
矩阵与算子广义逆
导语_点评_推荐词
本书是按照教育部对据高校理工类本科线性代数课程的基本要求及考研大纲编写而成。本书注重数学概念的实际背景与几何直观的引入,强调数学建模的思想与方法,密切联系实际,精选许多实际应用的案例并配有相应的习题,本书还融入了MATLAB的简单应用及实例。本书内容为:行列式、矩阵、线性方程组、特征值与特征向量、二次型、线性空间与线性
本教材共分6章,系统地介绍了线性代数与解析几何的基本理论与方法,内容包括行列式、矩阵、空间解析几何与向量运算、n维向量空间、线性方程组、实对称矩阵的对角化、二次型、Matlab在线性代数中的应用等内容。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,注意数学建模的思想融入教材,注重应用背景及应用实例的介绍。并精选
线性代数教程(第三版)
本书根据作者退休后在一些学校、场合有关数学的一些讲话整理而来。一个讲话列为一章。前面12个主要是与本科同学和研究生的座谈。包括:介绍伟大的国际数学大师陈省身先生在中国改革开放之后,回到祖国促进中国数学走向大国,强国之路;如何提高学习数学的动力、学习数学的方法;如何提高数学能力;几何学的重要性;代数学的一些特性;通过函数
《图的分解与完备残差图》主要内容包括以下五个方面:完全等部图的同构因子分解、完备三分图的同构因子分解、图的笛卡儿乘积的Hamilton圈分解、完备残差图的性质的研究,以及某些特殊残差图的性质研究。
第一章数域上的多项式与多项式函数,第二章关于线性空间和线性变换的基本概念,第三章线性相关性(线性代数的灵魂),第四章线性空间的直和分解(环-模的特殊情形),第五章初等变换,初等矩阵与矩阵的等价标准形的应用开发,第六章矩阵分块运算的应用开发,第七章自然数集与数学归纳法,第八章非Klein意义上的"高观点下的初等数学"
本书主要包含了经典离散数学课程的基本知识,包括数理逻辑、集合论、图论和代数系统4个部分的内容。其中数理逻辑主要介绍如何用数学的符号和语言研究推理演绎的过程,包括命题逻辑和谓词逻辑两部分;集合论用抽象化的方法定义了集合之间的关系,以及集合元素之间的关系和运算,包含了集合、二元关系和函数3块内容;图论介绍了一种特殊的离散结
有限群论导引
有向图的理论、算法及其应用
本书以线性方程组为主线,以行列式、矩阵和向量为工具,阐述线性代数的基本概念、基本理论和方法.使全书内容联系紧密,具有较强的逻辑性.本书是根据教育部高等学校理工类专业以及经济和管理学科各专业线性代数教学大纲的要求编写而成的.全书分为六章,各章内容分别是:行列式与线性方程组;矩阵与线性方程组;矩阵的初等变换与线性方程组;向
本书共分六章,第一章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的J
本书采用学生易于接受的方式科学、系统地介绍了线性代数的基本内容。强调适用性和通用性,兼顾先进性。本书起点低,坡度适中,简洁明白,适于自习。全书涵盖了考研的数学考试大纲有关线性代数的所有内容。习题按小节配置,量大题型多,书后附有答案。本书不在理论的细致末节上过分追求,而只注重线性代数的思想、理论原理、使用条件、使用方法和