本书将根据教育部“工科类数学基础课程教学基本要求”的精神和原则,结合编者多年教学实践与研究而编写,内容符合“复变函数与积分变换”课程的教学基本要求。教材编写力求结构严谨、逻辑清晰、深入浅出、重点突出、例题丰富、方便自学。突出应用性,使学生学会应用数学思想、概念和方法去处理工程实践中的实际问题;尤其“用MATLAB进行复
本套书由《微积分I》、《微积分II》两本书组成.《微积分I》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级
全书共4章,包括泛函分析基础、局部凸空间、算子理论和算子代数初步、Banach空间的微分学与拓扑度。第1章作为泛函分析基础。第2章是局部凸空间,主要讲授Hahn-Banach定理的几何形式。第3章是算子理论和算子代数初步,主要介绍了算子谱的基本理论、共轭算子、正规算子、紧算子以及自伴算子函数演算等基本算子理论和Bana
本书是根据作者在中山大学数学系三十多年来研究Banach空间理论写成的.本书汇集了Banach空间凸性理论的大量研究成果,主要内容有一致凸性,严格凸性等,本书可供高等学校数学系学生学习泛函分析和教师教学时参考.
《数学分析》是数学专业最基础课程,它是学习后续课程的基础,也是数学专业研究生入学考试的必考科目.数学分析的内容丰富,学生对内容的系统把握感觉困难.为了读者复习数学分析的需要,编著此书。本书包括极限论、一元函数微分学、一元函数积分学、级数理论、多元函数的极限与连续、多元函数微分学、含参变量积分、多元函数积分学
本书根据教育部高等院校教学指导委员会《经济管理类本科数学基础课程教学基本要求》的"微积分纲目"编写而成,内容包括:函数、极限与连续,一元函数导数与微分,中值定理与导数的应用,一元函数的不定积分,一元函数的定积分及其应用,多元函数微积分,无穷级数,微分方程与差分方程。
《微积分(经管类第三版)》依照教育部新的“经济管理类本科数学课程教学基本要求”和“研究生入学考试大纲数学三(经管类)”对该课程的要求,在保持第二版的结构科学合理,经济学例题经典丰富,融人数学软件应用、数学家简介、英文数学题及微积分学简史等特色的基础上,对教材内容、体系进行了适当的调整和优化,例题、练习题更加典型丰富。《
按《微积分》(经管类)(第三版)内容展开,体例和内容包括:基本要求、内容提要、释疑解难、例题分析、考题选讲、复习题和自测题及复习题解答与自测题解答。内容充实,选题灵活,题型丰富,覆盖面广.本书第三版是在第二版的基础上,根据教育部最新关于《经济和管理类本科数学基础课程教学基本要求》,结合近几年教学改革实践和新形势下教材改
本书系统论述了数学物理方程及其近似方法,主要内容包括:数学物理方程的基本问题、本征值问题和分离变数法的基本原理、Green函数方法、变分近似方法、积分方程基本理论、微扰理论、数学物理方程的逆问题和非线性数学物理方程。
多元函数逼近
双曲型守恒律方程及其差分方法
椭圆边值问题的边界元分析
导语_点评_推荐词
二阶椭圆型方程与椭圆型方程组
本书内容包括集合与点集、Lebesgue测度、Lebesgue积分、Lebesgue积分意义下的微分与不定积分以及Lp空间。本书每章后附有习题供学生进一步学习,同时书末附有系统的提示和建议。本书可以作为高等院校数学及其他相关专业的教材和教学参考书。
本书汇集了泛函分析教学过程中学生提出的大量问题,收集了很多主要概念和定理的反例,主要是关于度量空间、赋范空间、Hilbert空间和算子等问题和反例.
本书涵盖了数学分析教学大纲规定的全部内容,考虑到了数学分析内容的完整性、系统性和严格性,在基本教学内容的基础上作了适当的扩展,此外还介绍了当今世界最流行的计算机数学软件“Mathematica”在《数学分析》课程中解题和作图的应用。本书中配有大量的例题,既有几何、物理方面的应用题,也有相当数量的计算题和证明题;既注意了
本书系统介绍了全纯函数的Cauchy积分理论及其应用、Weierstrass级数理论及其应用、Riemann共形映射以及函数空间等,主体内容特别是几何函数论精练清楚,可视化较好便于理解,同时面向现代化的后续研究特别是侧重于解析函数函数空间及其对信号处理的应用。
本书系统地介绍偏微分方程的最新理论和方法,着重介绍广义函数理论,Sobolev空间的性质及其应用,二阶椭圆、抛物、双曲方程的存在性、唯一性、能量不等式等。本书循序渐进地阐述广义函数理论、Sobolev空间性质等与现代泛函分析理论等现结合,并强调在偏微分方程研究中的具体应用。本书内容深入浅出,文字通俗易懂,并配有适量难易