不变子空间问题是算子理论中一个著名的公开问题,研究内容涉及算子代数、非交换几何和数学物理等多个学科,但至今仍未得到完全解决.本书系统介绍积分空间与哈代空间中Beurling不变子空间研究的起源与进展,重点介绍作者近年来应用算子理论、算子代数及复分析的研究思想和方法,以及在哈代空间中Beurling不变子空间理论方面取得
全书共分为7章。章包含了关于深度、Krull维数以及CM性质等的一些核心结果或者基本事实;其中关于标准代数的CM性与分次CM性的等价性、序列CM性的代数描述两部分内容十本书的特色和贡献。第二章是讨论单纯复形的基本事实,特别是描述了两个代数不变量(由复形构造的面环的深度、Krull维数)与复形的拓扑不变量之间的确切关系)
《几何和统计(全彩)》内容简介:数学是一种“国际语言”,科学家用数学来表达他们对周围世界的具体想法。描述数量、形状和比例的能力是我们理解世界的核心方式,也是所有科学研究的基础。这本书展示了空间和数字之间的关系,探索了线、面和体的奥秘,并揭示了数据统计在现代数字世界中的重要性和应用价值。
本书以较小的篇幅介绍微分几何的基本概念和经典结果,着重解释引入几何概念的动机以及从局部微分几何到整体微分几何的自然过渡。除了强调微分几何的观点和方法之外,我们也注重介绍微分几何中的微分方程和复分析工具。作为微分几何的应用,我们将在本书的后一章用微分几何方法证明紧曲面三角剖分的存在性。
《应用拓扑学基础》讲述点集拓扑和代数拓扑的核心内容,同时介绍在理论计算机科学的一个重要研究领域——Domain理论中有广泛应用的序结构和内蕴拓扑。《应用拓扑学基础》共8章。第1章是集合论基础;第2章是拓扑空间与连续映射;第3章为构造新拓扑空间的方法;第4章是拓扑性质和相应的特殊类型拓扑空间;第5章介绍网和滤子的收敛,刻
本书详细论述用向量法解决常见几何问题的方法,特别是基于向量相加的尾衔接规则的回路法。指出选择回路的诀窍,用大量的例题展示回路法解题的简洁明快风格;分析常见资料中同类题目解法烦琐的原因;提出改进向量解题学的见解。全书共16章,从向量的基本概念和运算法则入手,由易至难,以简御繁,不仅列出向量法解题要领,还论及向量法与复数法
德国数学家尤尔根·约斯特的著作BernhardRiemannUeberdieHypothesen,welchederGeometriezuGrundeliegen,以一个微分几何学家的独特视角,将黎曼几何学思想置于更为宽广的背景——哲学、物理学以及几何学——加以考察,并将黎曼的推理置于他的追随者基于他的开创性思想所获得
非线性泛函分析是现代数学的重要方向,包括拓扑方法、变分方法、半序方法以及应用等多方面内容作为数学专业的研究生教材,《拓扑与变分方法及应用》主要介绍拓扑方法、变分方法的发展历史、基本理论、前沿研究进展及应用,主要内容包括:非线性算子性质、隐函数定理、连续性方法、Lyapunov-Schmidt约化方法、单调性方法、拓扑度
在计算机中处理三维几何对象的前提是其数字化表示以及如何建模得到这样的数字化表示。在不同的应用场合,这些数字化表示还会被进一步加工处理,甚至进行各种分析和模拟仿真。本书以当前数字体验、虚拟现实、3D打印等新兴研究领域中的三维离散几何处理问题为重点,系统全面地介绍作者在网格模型的几何处理、建模、分析和物理模拟等方面的研究成
本书是为大学数学专业本科生编写的一般拓扑学教材,以收敛和连续两个基本概念为脉络,讲解一般拓扑学中最为基本的概念和结果,内容包括度量空间、紧空间、连通空间、度量化定理、Stone-Cech紧化、函数空间等。本书取材精炼,注重公理化方法对现代数学的影响,强调空间性质与映射性质之间的联系,并配有大量习题。
本书是现代几何的入门教材,着重介绍现代几何的基础知识、基本理论和方法,内容包括点集拓扑基本理论、拓扑空间的可分离性、基本群与覆盖空间、多重线性代数、微分流形、外微分形式、黎曼流形与黎曼联络及基本的曲率性质.本书不但可为几何专业的学生继续深入学习提供不可或缺的支撑,也可为非几何专业的学生和教师、研究工作者提供较系统的几何
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点,主要内容包括:具有正曲率的完全非紧卡勒流形;随机矩阵理论中的极端间隙问题;近似Hermitian流形上的标量曲率;具有对数正则奇点的Kahler-Ricci流;与等参理论有关的问题;关于Higgs粒子束的Hermitian-Ein
《解析几何》一方面内容充实,通俗易懂,是学习几何学的入门教材。书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),又讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和等距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。该书
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备
本书围绕黎曼流形优化发展过程中的理论前沿与热点问题,比较全面和系统地介绍了黎曼流形优化的基本原理和应用实践的**成果。全书共7章,分为理论与应用两个部分。理论部分包括黎曼流形内涵、常用黎曼流形及其几何结构、收缩、低秩流形收缩、黎曼最速下降法、黎曼牛顿法、黎曼共轭梯度法、黎曼信赖域法和黎曼拟牛顿法等内容。应用部分包括鉴别
本书主要讲解张量基本概念,它们的代数运算和微分学,以及Riemann流形上的张量及其微积分学,Riemann流形上的微分算子。本书还用大量篇幅讲授张量在连续介质力学和物理中的应用。其中有许多内容是作者30多年的研究生涯中应用张量分析工具,建立相关力学数学模型,发展新的数学方法和数值计算方法的研究成果。
基础拓扑学是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
辛几何是近几十年发展起来的新的重要数学分支。本书是辛几何(新流形)的入门性读物。。全书分为六章,分别是代数基础、新流形、余切丛、辛G-空间、Poisson流形、一个分级情形。前三章是重要的基本概念,后三章论述有关的应用。
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
本书是科学出版社出版的《向量分析与场论》和《复变函数与积分变换》两本教材的配套辅导用书,内容包括向量分析、数量场、向量场、三种特殊形式的向量场、复数及复变函数、解析函数、复变函数的积分、复变函数的级数表示、残数及其应用、保形映射、傅里叶变换和拉普拉斯变换。各章内容有基本要求、主要内容复习、例题分析,每一个阶段学习后有一