本书依据民族预科教育“预补结合”的原则进行设计,以民族预科阶段的教学任务为中心内容,以少数民族预科学生的认知水平及心理特征为着眼点来编写。在数学内容的选择与组织上,重思路、重方法、重应用,考虑到民族预科教学学时的限制,在必须精简的条件下,注意了学科的系统性。 全书共八章,涵盖了一元微积分的主要内容;同时适当介绍微积分
信念修正是人工智能的研究分支之一。在哲学,认知心理学和数据库更新等领域中,很早就有对信念修正的讨论和研究。AGM公设在20世纪70年代末被提出来,它是任何一个合理的信念修正算子应该满足的最基本条件。《R-演算:一种信念修正的逻辑》**作者李未院士在20世纪80年代中期提出R-演算,这是一个满足AGM公设,非单调的,并且
本书系统介绍q-级数研究领域的主要理论、方法及其应用.全书共九章,内容包括正整数的分拆、基本超几何级数、求和与变换公式及其应用、双边基本超几何级数及其应用、Bailey对及其应用、Carlitz反演及其应用、q-微分算子及其应用、q-指数算子及其应用、一类Hecke型恒等式等.本书吸纳了q-级数理论研究领域的新成果.《
本书主要讲授Lebesgue测度与积分理论的基本内容。全书共6章,内容包括集合论初步、可测集、可测函数、可积函数、微分与积分、空间。本书力求用简明的语言阐述Lebesgue测度与积分理论的主要思想和方法,注重基本概念的讲解和基本方法的介绍,特别注重讲透Lebesgue积分理论与Riemann积分理论的区别和联系。本书还
《数值泛函及其应用》用通俗浅显的语言介绍了泛函分析中与工程计算、数值逼近有密切关系的基本理论和有关重要定理及公式,如距离空间中的压缩映像原理与迭代法;Banach空间中的线性泛函与线性逼近;Hilbert空间中的正交分解、投影与逼近;Fourier分析与快速Fourier变换;泛函求极值的变分理论,有限元的变分原理及计
本书系统完整地介绍了测度论和概率论的基础知识.前5章介绍一般可测空间和Hausdorff空间上的测度与积分,包括局部紧拓扑群上的Haar测度.第6章介绍距离空间上测度的弱收敛和局部紧Hausdorff空间上测度的淡收敛,第7章介绍与测度论有关的概率论基础,第8章介绍离散时间鞅的基本理论,第9章介绍Hilbert空间和B
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性
数学物理反问题(也包括地球科学反演)已成为应用数学发展和成长最快的领域之一.基于模型驱动的传统科学和基于大数据分析的人工智能领域,都要求求解反问题.该书把地球科学反演问题高度概括,以第一类算子方程作为基本问题描述的出发点,系统开展反问题的基本理论、重要方法和应用研究描述.该书涵盖了反演领域的大部分知识点,包括反问题的不
本书主要讨论经典李群方法在微分方程中的应用,内容涵盖了微分方程的李群方法的一些**研究成果.除绪论外,全书共6章,基本内容包括与李群方法相关的基本概念、多种类型微分方程的李群分析、偏微分方程守恒向量的构造和精确解的求解,以及李群方法的其他应用.本书系统性强,各章节自成体系又相互联系.在内容叙述和安排上,尽量采用通俗易懂
本书共6章。第1章是动力系统和函数方程简介。第2章介绍Sharkovsky序列、倍周期分岔、Feigenbaum函数方程、FKS函数方程。第3章介绍实数的动力系统展开,以及相关展开的分析性质。第4章介绍区间映射的共轭问题,包括单调映射、多峰映射、Markov映射,以及马蹄映射等;讨论共轭方程组的奇异解,无处可微连续解和
本书主要解决数学分析中的收敛与发散及相关的一些问题,内容包括数列的收敛与发散、反常积分的收敛与发散、数项级数的收敛与发散等.本书深入浅出,表达清楚,可读性和系统性强.书中主要通过一些疑难解析和大量的典型例题来解析数学分析的内容和解题方法,并提供了一定数量的习题,便于教师在习题课中使用和学生在学习数学分析时练习使用.本书
《非线性演化方程介绍非线性演化方程的物理北京、研究方法和取得的一些**的结果,包括一些**的结果。最后还介绍了无穷维动力系统。非线性演化方程内容非常丰富,该书分五章,基本还是属于介绍性的,读者可以从中对这一研究领域有一个较好的了解。
本书基于作者在中山大学研究生讨论班主讲Banach格的张量积理论的讲稿,主要是关于Banach空间和Banach格的张量积基本概念与性质、Radon-Nikodym性质和Grothendieck性质等几何性质在张量积的继承问题。
本书力求对分数阶偏微分方程的有限差分方法做一个系统的介绍。全书分为6章。第1章介绍四种分数阶导数的定义,给出两类分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解。这些是后面章节中分数阶偏微分方程数值解的基础。接着的5章依次论述求解时间分数阶
本书是国家工科数学教学基地之一的哈尔滨工业大学数学学院根据教育部数学基础课程教学指导分委员会**修订的《工科类本科数学基础课程教学基本要求(修订稿)》的精神和原则,结合多年的教学实践和研究而编写的系列教材之一。全书共7章,包括复数、解析函数、复变函数的积分、级数、留数及其应用、傅里叶变换、拉普拉斯变换。每章后精心设计了
本书重点介绍了回收锥、凸函数的连续性、凸集的分离定理、凸函数的共轭函数及支撑函数、凸集的极及其相关内容。这一部分是分析约束优化问题理论性质尤其是对偶理论的基础工具。为了增强可读性,本书将抽象的概念尝试用简单的例子和直观的图像来表达,以期读者对本书内容有更形象深刻的理解和把握。同时,将知识点与**化方法部分前沿研究内容进
本书论述变指标函数空间理论的**进展。全书内容包括:变指标函数空间和模空间的基本性质;Hardy-Littlewood极大算子在变指标Lebesgue空间、变指标Herz型空间和变指标加权Lebesgue空间上的有界性,以及度量测度空间上的极大算子在变指标空间上的有界性;多重奇异积分算子在变指标空间上的有界性;常指标加
本书分上、下两册.上册内容包括实数集及其性质、函数、数列、函数极限、连续函数、微分、微分学的应用、不定积分、定积分;下册内容包括函数列与函数级数、简易多元微分学、简易多元积分学以及两个附录.
本书从图像处理的基本概念出发,整理了若干图像处理中的偏微分方程模型和算法。全书共6章,包括三部分内容:第一部分(第1,2章)介绍基于偏微分方程数字图像处理的基础知识,包括绪论、现有图像去噪模型的数学定义;第二部分(第3,4,5章)详细讨论不同噪声模型下的偏微分方程去噪方法,包括加性噪声去除偏微分方程方法、乘性噪声去除偏
自20世纪80年代以来,有关人工神经网络的研究引起了众多科学工作者的兴趣,形成了近代非线性科学和智能计算研究的主要内容之一。本书旨在帮助读者了解这方面的概况、动态、思维模式和研究方法。书中综合了作者收集到的国内外有关研究资料,以及作者研究团队近几年取得的结果和有待解决的问题。通过对几类神经网络模型和相关研究结果的系统整