本书以抛物型方程源项反演为主要研究对象,以构造稳定化的数值反演算法为主要目标,对正则化方法的基本理论进行了简要的介绍.全书共6章,内容包括基本概念与引例、反演问题的正则化方法、正则化参数选取的模型函数方法、抛物型方程与方程组中点污染源的数值反演、抛物型方程中时空分离源项的数值反演、基于源项反演的数值微分方法.
微积分是高等院校很多专业学生的基础课.它不仅对培养学生的逻辑推理能力、抽象思维能力,以及各专业的若干后续课程的学习都起着重要的基础作用,而且,课程自身的理论结构也广泛应用于自然科学和工程技术的各个领域。本书根据普通高等学校少数民族预科数学教学大纲的要求编写而成. 全书内容丰富,覆盖全面,共分八章,分别是:函数、函数极
数学优化是研究优化问题的数学理论和方法的一门学科,是数学的一个重要学科方向,是应用数学的重要组成部分,是数学在其他领域应用的重要工具,也是当前机器学习、人工智能的基础之一.优化理论与方法在科学和技术的各个领域以及国防、经济、金融、工程、管理等许多重要实际部门都有直接的应用.《BR》《中国学科发展战略·数学优化》系统分析
本书主要讲授连续函数的一致逼近、最佳逼近的存在性和唯一性、内积空间中的逼近、线性切比雪夫逼近、Lq空间内的逼近、最佳多项式逼近的收敛性以及有理函数逼近等。具体包括:伯恩斯坦定理、科罗夫金定理和谢弗定理、周期逼近、贝塞尔曲线、贝塞尔曲面、交错定理、哈尔条件、雷米兹交换算法、Padé逼近和Malhey逼近等。本书适当减少抽
《复变函数与积分变换》共分9章,分别介绍了复数与复变函数、解析函数、复变函数的积分、级数理论、留数、共形映射、傅里叶变换、拉普拉斯变换,以及解析函数在平面向量场的应用。此外,每章均配备比较丰富的习题,以帮助学生加深对概念的理解,提高其分析问题和解决问题的能力。并且书后给出了习题参考答案或提示,附录中附有傅里叶变换简表和
本套书由《微积分I(第三版)》、《微积分II(第三版)》两本书组成.《微积分I(第三版)》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II(第三版)》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线
应用数学分析基础是在重庆大学“高等数学”课程教材体系改革试点工作配套讲义的基础上历经20多年修订而成的.与传统高等数学教材相比,本书不仅注重让学生理解、掌握高等数学的内容,同时也强调培养学生实事求是的科学态度、严谨踏实的科学作风和追根究底的科学精神.《BR》全书共分四册,本册为数学模型及其求解问题,内容包括场论、数学模
本书系统地阐述了凸优化的理论与算法.首先介绍必要的凸分析基础知识,然后讨论对偶理论与**性条件,它们作为基础对凸优化算法的理论分析起着十分重要的作用,最后讲述凸优化算法.全书基本涵盖了所有的关键性证明,尽量为读者节省查阅其他文献的时间.同时也收录了一些相关领域的**研究成果,所涉及内容有着广泛的应用前景.
本书以希尔伯特空间中的框架理论为基础,介绍了近几年框架研究中的一些热点问题。其主要内容包括Riesz对偶的性质及其等价性讨论,伪样条概念的推广及其生成的框架小波,相位恢复和广义相位恢复的稳定性等。第1章简要介绍本书要用到的一些概念,包括各类空间、算子以及空间的基等。第2章主要介绍希尔伯特空间中Riesz对偶的概念、性质
《复变函数》主要讲述单复变函数的基本理论,包括复数与复变函数,解析函数,复变函数的积分理论、级数理论、留数理论和几何理论.《复变函数》注重本科生的教学,也注重复变函数对于科学研究的应用.对于本科生,内容不会过深过难,更适用于大多数院校的本科教学.
《微分方程数值方法——有限差分法》介绍了微分方程数值求解方法——有限差分法。内容涉及有限差分法的基本设计过程与具体的实现过程,有限差分法在工程、科学和数学问题中的应用以及MATLAB程序,涵盖了有限差分法的很多内容:常微分方程的数值解法;二阶椭圆型、二阶抛物型及二阶双曲型方程的数值算法;各种非线性偏微分方程以及非线性偏
《数学分析讲义·第三卷》始于实数的基本理论.接着进入一元微积分学,包括极限、连续、级数、微分、复数、积分等,重视它对现代数学的启迪,适时介绍些抽象概念(如对基的极限),以利于拓展到一般分析学.其次探讨拓扑空间(特别是度量空间、欧氏空间nR)的映射,展开多元微积分学,其中涉及隐函数定理、集合上的积分、流形(特别是nR中的
《多元微积分及其应用》是美国著名数学家PeterLax与康奈尔大学数学教授MariaTerrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积
本书是在集作者多年教学经验和教学实践的基础上,通过集体商讨、研究编写而成的。全书共六章:一阶微分方程的初等积分法、线性微分方程组、高阶线性微分方程、基本理论、定性理论初步及一阶偏微分方程初步。本书结合地方高等院校数学专业的实际情况,对相关内容和习题进行了提炼、精简、分类,力图在现有教学课时(48学时)内既能完成教学内容
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用
《基于多元样条插值的有限元方法》系统介绍了采用多元样条插值基函数构造平面四边形、多边形和三维单元形状函数的有限元方法.《基于多元样条插值的有限元方法》内容分为6章.第1章简要介绍了弹性力学有限元方法的基本理论.第2章概述了多元样条方法的基础知识,包括光滑余因子协调法、B网方法.第3章介绍了Ⅱ型三角剖分的平面凸四边形样条
精确可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题.与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含更多的参量,因此受到了特殊的重视.《椭圆函数相关凝聚态物理模型与图表示》详细介绍了杨-Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:Z
《数学分析研学》是在东南大学数学分析研讨课的基础上完成的,主要按照研学的要求来设计,形式非常新颖.每章、每节均以思考题开始.章的思考题更宏观一些,节的思考题更具体一些.这些思考题多围绕知识背景与历史渊源、核心思想、基本概念与主要方法来提出,并在接下来的正文中都给出了简要的回答或提示.之后是概念辨析与强化训练.概念辨析,
《实变函数论讲义》根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.《实变函数论讲义》的习题都有解答或者提示,方便学生学习.《实变函数论讲义》一个重要特点是结合测度论的发展历史,对