该书共5章,分别介绍有限元和混合有限元理论基础及其应用。最精彩的是第4和第5章,详细介绍非定常偏微分方程有限元法中的有限元空间和有限元未知解系数向量的降维方法,可将含数十万乃至上千万未知量的有限元迭代方程降阶成为只有很少几个未知量的降阶方程,理论和数值例子都证明了两种降维方法的正确性和有效性。这些降维方法都是作者原创性的工作,这些方法都已经在国际重要刊物发表。该书很详细做了介绍。这些方法的推广应用,将会带动计算数学向更高度发展。
本书全面系统地介绍了三类典型偏微分方程——波动方程、热传导方程和稳定场方程求解的谱元法。全书共分8章:第1章导出典型偏微分方程与定解条件;第2章介绍谱元法的基础知识;第3-5章介绍谱元法求解稳定场方程、热传导方程和波动方程;第6-8章讨论谱元法在地球物理正演中的应用,书中的实例均经过验证。
《数学分析讲义》(上、下册)是作者在中国科学院大学授课期间编写的,讲义内容主要参考了华东师范大学数学系编写的《数学分析》,以及国内外一些优秀的教材,并在此基础上作了一些补充。讲义注重分析的几何直观性、理论的严谨和系统性、应用的深入性,以及与后续学科的衔接性。
本书主要介绍粗糙微分方程及其动力学方面的若干研究成果.全书分为七章.第1章介绍相关背景材料;第2章为全书的基础,给出粗糙路径、高斯粗糙路径、受控粗糙路径的定义及相关性质;第3章介绍粗糙积分和粗糙微分方程的解理论;第4章介绍随机动力系统基本理论;第5章介绍有限维粗糙微分方程所生成随机动力系统的相关动力学——中心流形、随机吸引子以及随机动力系统的逼近;第6章介绍几类粗糙偏微分方程的基本解理论,内容涵盖特征线方法、Feynman-Kac表示、半群方法、变分方法;第7章介绍随机粗糙偏微分方程生成的无穷维
本书主要介绍了无穷维下非光滑函数和非凸集合的一些基本概念和性质,以及应用到控制理论中。首先在引言章节,作者从数学优化例子出发引出了本书的主题-经典微分学的深入研究-非光滑分析。然后分别用三章讲述了非光滑函数和非凸集合的一些计算法则及应用场景:第一章介绍了Hilbert空间中的邻近次微分计算法则;第二章介绍了Banach空间中广义梯度的计算法则;第三章是一个特别专题,讨论了数学优化的几个问题。最后一章讨论了常微分方程的控制理论。
函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书第一版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与最优性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,第二版增加了若干新的成果和使用较多的基本结果,调整了一些内容顺序,某些定理进行了简化证明等.
本书针对非凸变分不等式投影类方法中客观存在的错误,给出修正的理论结果,进而利用投影技术研究上述正则非凸变分不等式与不动点问题、变分包含问题之间的正确关系,从而建立正则非凸变分不等式和不动点问题之间的等价性。利用这种等价性来讨论正则非凸变分不等式的解的存在性,并且利用这等价替代形式来构造解正则非凸变分不等式的投影类迭代算法。通过理论证明迭代算法在一定条件下是收敛的。此外,本书从力学问题引入拟定常变分不等式思路和原理,建立具时滞拟定常变分不等式及非凸变分不等式的数学模型,进而运用非凸分析中近似法锥结
《在线凸优化(第2版)》全面更新,深入探索优化和机器学习交叉领域,详细介绍日常生活中许多系统和模型的优化过程。●第2版亮点:增加了关于提升、自适应遗憾和可接近性的章节●扩大了优化和学习理论的覆盖面●应用实例包含专家建议投资组合选择、矩阵补全推荐系统和支持向量机训练等●指导学生完成练习
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界公认,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。另外,中译版本中还增加了大量插图,具有很强的可读性。
本书主体内容大致分为四个部分:第3-5章介绍了凸性、计算模型和凸优化的高效性概念以及对偶性;第6-8章分别介绍了梯度下降法、镜像下降法和乘性权重更新法以及加速梯度下降法等一阶方法;第9-11章介绍了牛顿法和线性规划的各种内点法;第12章和第13章介绍了用于线性规划和一般凸规划的椭球法等割平面方法。另外,第1章通过讲述连续优化和离散优化之间的相互作用的简要历史来概述本书:探索离散问题的快速算法如何推动凸优化算法的改进。