本书是作者所作的《基础代数》第三卷.作者吸收借鉴了柯斯特利金《代数学引论》的优点和框架,在内容的选取和组织,贯穿内容的观点等方面都有特色.主要内容包括:群、群的结构、群表示、环、代数、模、伽罗瓦理论等.每章节附有适当的习题,可供读者巩固练习使用.
《IntroductiontoAbstractAlgebra》(抽象代数基础)不仅在数学中占有及其重要的地位,而且在其它学科中也有广泛的应用,如理论物理、计算机学科等。其研究的方法和观点,对其他学科产生了越来越大的影响。本教材采取全英文形式撰写,主要介绍群、环、域的基本理论。通过《抽象代数》的学习,让学生理解和掌握群、
本书介绍离散数学的知识和应用。全书分为七章,分别为命题逻辑、谓词逻辑、集合论、二元关系、图论、初等数论和代数系统。《BR》本书用较大的篇幅介绍了离散数学知识在现代通信中的应用,包括公钥密码体制RSA解决方案、计算机大整数加法、编码和纠错方案等,这些应用都有详细的背景知识介绍,相应的结论也有详细的证明过程。
本书是与《线性代数(慕课版)》配套的学习指导书,是根据工科类高等院校“线性代数”课程的基本要求,结合编者多年的教学经验编写而成的。全书共6章,第1章为行列式,第2章为矩阵,第3章为向量与向量空间,第4章为线性方程组,第5章为矩阵的特征值与特征向量,第6章为二次型。每章包含知识结构、重点与考点分析、典型例题与方法归纳、习
环论是抽象代数学中较为深刻的一部分,亦为结构数学的重要分支之一,按照乘法是否满足交换律,可以被划分为交换环论和非交换环论。自19世纪开始,经过众多数学家的辛勤耕耘,环论在20世纪二三十年代形成抽象而又具有结构性的理论,并渐生诸多应用。本书在前人工作的基础之上,从不同角度对环论的历史进行考察;从思想史角度剖析环论的演化,
本书是根据作者近五年在西南大学教授线性代数及相关课程和从事科研工作的经验,以及阅读科技读物的感悟写成的。本书力求用兼具浅白和科技的语言介绍线性代数中的抽象概念,包括线性方程组、矩阵、向量、特征值与特征向量以及二次型,进而揭开这些概念自身的本质特征和概念之间关系的面纱。本书在内容编排和处理方法上采用更直接、更简捷、更具有
本书主要分为基础知识与应用两个部分.在基础知识部分,系统地介绍了图论的基本概念、理论和方法,具体内容包括图的基本概念、树、图的连通性、平面图、匹配理论、Euler图与Hamilton图、图的着色、有向图、网络流理论以及图矩阵与图空间,共十章.在应用部分,主要介绍了近年来图计算方面的一些典型应用和系统,具体内容包括无标度
矩阵半张量积是近二十年发展起来的一种新的矩阵理论.经典矩阵理论的**弱点是其维数局限,这极大地限制了矩阵方法的应用.矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为穿越维数的矩阵理论.《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍.计划出五卷,卷一:基本理论与
本书介绍了矩阵的基本理论、方法及应用。在选材上力求做到科学、严谨、简洁表述。全书共分八章,系统介绍矩阵的Jordan标准形、线性空间与线性变换、内积空间、矩阵的分解、范数及其应用、矩阵微积分、广义逆矩阵、特征值的估计。内容由浅入深,尽量使读者在较短时间内能够掌握近现代矩阵理论的相关基本内容。学过线性代数课程的读者均具有
本书是根据教育部高等学校教学指导委员会制订的新的本科数学基础课程教学基本要求编写的,包括行列式、矩阵、线性方程组、方阵的特征值与特征向量、二次型和MATLAB实验共六章.每章都配有丰富的典型例题和充足的习题,书末附有部分习题参考答案.本书适合作为高等学校理工科各专业线性代数课程的教材,也可供相关科研人员参考.