本书是为理工科学生编写的常微分方程定性理论的入门教材,以简短篇幅介绍非线性常微分方程的近代方法,并兼顾某些应用.全书共七章,内容包括:预备知识、线性系统、非线性微分方程解的存在定理与解的性质、定性理论初步、稳定性理论的概念与方法、解析方法和应用:椭圆函数与非线性波方程的精确行波解.作为研究生入门的基础课,本书为读者提供
本书在讲授了随机微分方程、随机反应扩散方程、随机Navier-Stokes方程和带切换的随机微分方程解的存在**性和正则性的基础上,系统地讲授了加性噪声和乘性噪声驱动的随机发展方程的适定性及正则性,总结了Hilbert空间和Banach空间中随机发展方程遍历性证明方法,简要讲述随机动力系统的Wong-Zakai逼近及随
本书利用交互式定理证明工具Coq,在朴素集合论的基础上,从Peano五条公设出发,完整实现Landau著名的《分析基础》中实数理论的形式化系统,包括对该专著中全部5个公设、73条定义和301个定理Coq描述,其中依次构造了自然数、分数、分割、实数和复数,并建立了Dedekind实数完备性定理,从而迅速且自然地给出数学分
积分论一直是分析学的核心领域,近年来产生的非可加积分、集值积分与模糊值积分理论发展迅速,且在信息论、控制论、数量经济、决策过程、人工智能和大数据等领域有着广泛的应用.本书系统介绍非可加积分、集值积分与模糊值积分领域的**理论成果,因为其涵盖了经典的Lebesgue积分,所以定名为“广义积分论”.内容有:单值积分,包括抽
本书研究无穷区间上常微分方程边值问题的非线性泛函分析理论,内容共七章,其中前两章系统介绍无穷边值问题、函数空间和非线性泛函理论的基础;第3—7章分别给出了五种方法研究二阶和高阶常微分方程、具有p-Laplace算子的微分方程、差分方程以及方程组的特征值问题、两点边值问题、多点边值问题、共振问题、周期解、次调和解和反周期
偏微分方程是描述在变化中有守恒之物理世界诸多机制的重要手段。本书将围绕波动、热传导以及泊松方程三类最典型的二阶偏微分方程展开讨论,同时介绍特殊函数这一可用于求解偏微分方程的分析工具。本书旨在帮助读者初步形成综合运用偏微分方程分析解决物理问题的能力。
“Commoninvariantsubspacesandcompactnessconditions”一书主要总结了算子集合的不变子空间性质,以及类紧算元的相关结果。在算子理论中,我们把紧的拟幂零算子称为Volterra算子。由Volterra算子组成的集合亦称为Volterra集合,如Volterra半群,Volter
本书主要研究数学分析中的微分与积分及相关的一些问题。内容包括一元函数微分学、一元函数微分法的应用、一元函数积分学和多元函数及其微分学等。本书在内容的安排上,深入浅出,表达清楚,可读性和系统性强。书中主要通过一些疑难解析和大量的典型例题来解析数学分析的内容和解题方法,并提供了一定数量的进阶练习题,便于教师在习题课中使用,
本书为数学分析的学习指导书,是丁彦恒、刘笑颖、吴刚编写的《数学分析讲义》、二、兰卷的配套用书。主要内容除了经典的一元微积分、多元微积分、级数理论与含参积分之外,还包括拓扑空间的酣古、流形及微分形式、流形上微分形式的积分、向量分析与场论、线性赋范空间中的微分学和傅里叶变换等。为了便于读者复习与自查,每一章中都包含了知识点
《非线性偏微分系统的可积性及应用》主要以对称理论为工具,研究了若干非线性偏微分系统的非局部对称、Lie对称、条件Lie-B?cklund对称及近似条件Lie-B?cklund对称;以伴随方程方法及相关理论为基础,研究了几类非线性系统的守恒律;以Lax对和规范变换为基础,研究了几类非局部方程的Darboux变换.《非线性