本书是根据作者近五年在西南大学教授线性代数及相关课程和从事科研工作的经验,以及阅读科技读物的感悟写成的。本书力求用兼具浅白和科技的语言介绍线性代数中的抽象概念,包括线性方程组、矩阵、向量、特征值与特征向量以及二次型,进而揭开这些概念自身的本质特征和概念之间关系的面纱。本书在内容编排和处理方法上采用更直接、更简捷、更具有
本书主要分为基础知识与应用两个部分.在基础知识部分,系统地介绍了图论的基本概念、理论和方法,具体内容包括图的基本概念、树、图的连通性、平面图、匹配理论、Euler图与Hamilton图、图的着色、有向图、网络流理论以及图矩阵与图空间,共十章.在应用部分,主要介绍了近年来图计算方面的一些典型应用和系统,具体内容包括无标度
矩阵半张量积是近二十年发展起来的一种新的矩阵理论.经典矩阵理论的**弱点是其维数局限,这极大地限制了矩阵方法的应用.矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为穿越维数的矩阵理论.《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍.计划出五卷,卷一:基本理论与
本书介绍了矩阵的基本理论、方法及应用。在选材上力求做到科学、严谨、简洁表述。全书共分八章,系统介绍矩阵的Jordan标准形、线性空间与线性变换、内积空间、矩阵的分解、范数及其应用、矩阵微积分、广义逆矩阵、特征值的估计。内容由浅入深,尽量使读者在较短时间内能够掌握近现代矩阵理论的相关基本内容。学过线性代数课程的读者均具有
本书是根据教育部高等学校教学指导委员会制订的新的本科数学基础课程教学基本要求编写的,包括行列式、矩阵、线性方程组、方阵的特征值与特征向量、二次型和MATLAB实验共六章.每章都配有丰富的典型例题和充足的习题,书末附有部分习题参考答案.本书适合作为高等学校理工科各专业线性代数课程的教材,也可供相关科研人员参考.
本书系统介绍逻辑代数滤子理论,涉及模糊化理论及其结构应用,主要是作者近年来研究工作的系统总结,同时也兼顾国内外此领域中的相关研究成果。全书6章,具体内容包括:基础知识(第1章)、基于t模模糊命题逻辑系统相应逻辑代数的滤子及模糊滤子(第2章和第3章)、基于包括伪t模的非可换逻辑代数滤子的模糊化应用研究(第4章)、几种由模
本书是“空间有向几何学”系列成果之二.在平面“有向几何学”系列等研究的基础上,创造性地、广泛地运用有向距离和有向距离定值法,对与空间平面多边形有向面积有关的一些问题进行更深入、系统的研究,得到了一系列点到平面间有向距离的定值定理,揭示了这些定理与经典数学问题、数学定理和一些数学竞赛题之间的联系,较系统、深入地阐述了空间
本书根据高等院校非数学类本科线性代数课程的教学基本要求,参照近年来线性代数优秀教材及一流课程建设的经验和成果修订而成.全书共六章,内容包括:行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、矩阵的特征值与特征向量、二次型.各章均有背景介绍和典型的应用案例分析,并配有适量的习题,书后附有参考答案.书中楷体排印
线性代数是高等院校理工科和经济管理学科很多专业学生的基础课.它不仅对培养学生的逻辑推理能力、抽象思维能力,以及各专业的若干后续课程的学习都起着重要的基础作用,而且,课程自身的理论结构也广泛应用于自然科学和工程技术的各个领域。 本教材的读者对象主要是高等院校的理工类及经济管理类本、专科在校学生、从事数学学科专业教育的教
目前,素数变量丢番图逼近问题是数论领域的一个重要研究内容。本书利用近几年在圆法和筛法上的突破和创新系统地论述了在素变数丢番图逼近方面取得的成果。本书系统地研究了一次、二次、三次以及高次素变数丢番图逼近问题。给出了二元一次型素变数丢番图逼近的新的例外集结果;在二次上,把华林-哥德巴赫问题上经典的华罗庚定理推广到了素变数丢