本书共5章,内容包括线性方程组与矩阵、矩阵运算及向量组的线性相关性、向量空间Rn、行列式、矩阵特征值问题及二次型。各章均配有一定数量的习题,并根据难易程度分为A、B两类,书末附有习题答案。各章均有一节应用实例专门介绍线性代数在各个领域的应用,以激发学生的学习兴趣,培养学生应用线性代数知识解决实际问题的能力。附录包含MA
本书创造性地广泛地运用有向度量法和有向度量定值法,对空间有关问题进行研究,得到了一系列的有关空间有向度量的定值定理,揭示了这些定理与经典数学问题、数学定理和一大批数学竞赛题之间的联系,从而较为系统、深入地阐述了空间有向度量的基本理论、基本思想和基本方法。
群论部分着重讲授"群在集合上的作用"这一基本工具,侧重"从抽象到具体"的思想的转化,重点是引入代数学的计算工具MAGMA,辅助学生的学习和研究抽象的代数对象。环论部分着重交换环、素理想、局部化思想和多项式环;以对称多项式的结构定理为起点,让学生对"代数不变量理论"(交换代数的经典主题之一)有初步的认识;同时,MAGMA
本书介绍偏Hopf作用的表示、偏缠绕结构,偏Doi-Hopf群模、以及积分的基本概念和理论,重点讨论这些模上的Maschke定理、可分函子、Frobenius性质及其应用等。本书内容由浅入深,既有理论又有新的应用,反映了近10年来偏Hopf作用理论研究的最新成果。
聚合函数不同于传统的信息聚合模型,是用函数观点来描述信息聚合的数学工具,在模糊数学理论、模糊控制、模糊逻辑、决策理论和智能计算中有广泛的应用.虽然关于它的研究可以追溯到阿贝尔的早期工作,但是它的真正兴起是近20年的事情,目前正处在蓬勃发展阶段.本书将以一致模算子为主线,介绍近年来的进展及作者在这方面的工作.主要包括:一
本书内容包括数、数的加法和数的乘法,以及由此延伸开来的群、环、域、多项式和向量空间。与其他线性代数的教科书不同的是立足点和理论框架的选择。本书不将任何数及其算术运算当成给定的原始概念,而是从数学基础的角度建立起它们的确切解释,并将这样的解释作为数学的一种基础,进而建立和发展线性空间的基本理论。
本书介绍线性代数理论的基础知识,包括矩阵及其运算,线性变换及其逆变换,行列式及其计算,向量空间的基与维数,线性方程组的消元法与解的结构,矩阵的特征值与特征向量,二次型化简与最小二乘法拟合平面直线方程,全书以简单情形为起点,以解决问题为目标,通过归纳法和类比法等思维方法的应用,力求以一种比较自然的方式呈现线性代数的基础理
本教材"抽象代数基础",其上册由前六章构成,依次为集合论的基本概念,抽象代数的基本概念,Gren关系与正则半群,群(特别地,有限群),环与理想,以及模与线性空间;其下册由后两章构成,依次为域与域扩张和Galois理论导引,它的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章,或前六章(特别
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次
本书系统介绍EQ-代数与相关逻辑代数的基本理论及其不确定理论,主要是作者近年来研究工作的系统总结.全书共十一章,具体内容包括:EQ-代数及相关逻辑代数、EQ-代数上的滤子理论、EQ-代数上的拓扑理论、逻辑代数上的超结构理论、逻辑代数上的态、内态和广义态理论、逻辑代数上的微分算子理论等.