本书介绍线性代数理论的基础知识,包括矩阵及其运算,线性变换及其逆变换,行列式及其计算,向量空间的基与维数,线性方程组的消元法与解的结构,矩阵的特征值与特征向量,二次型化简与最小二乘法拟合平面直线方程,全书以简单情形为起点,以解决问题为目标,通过归纳法和类比法等思维方法的应用,力求以一种比较自然的方式呈现线性代数的基础理
本教材"抽象代数基础",其上册由前六章构成,依次为集合论的基本概念,抽象代数的基本概念,Gren关系与正则半群,群(特别地,有限群),环与理想,以及模与线性空间;其下册由后两章构成,依次为域与域扩张和Galois理论导引,它的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章,或前六章(特别
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次
本书系统介绍EQ-代数与相关逻辑代数的基本理论及其不确定理论,主要是作者近年来研究工作的系统总结.全书共十一章,具体内容包括:EQ-代数及相关逻辑代数、EQ-代数上的滤子理论、EQ-代数上的拓扑理论、逻辑代数上的超结构理论、逻辑代数上的态、内态和广义态理论、逻辑代数上的微分算子理论等.
本书是大学本科非理科专业必修课“高等代数”课程教材。全书共九章:行列式、矩阵、线性方程组与n维向量空间、矩阵的特征值与特征向量、二次型、多项式、线性空间、线性变换、欧氏空间。本书将特征值与特征向量分为矩阵的特征值与特征向量(第四章)和线性变换的特征值与特征向量(8.4节)两部分,力求使得只修高等代数Ⅰ(第一章至第五章)
本书主要介绍本科高等代数中行列式理论、矩阵理论、线性方程组理论、多项式理论、线性空间理论等.。全书共分10章:第1章为行列式,第2章为矩阵,第3章为线性方程组,第4章为多项式,第5章为二次型,第6章为线性空间,第7章为线性变换,第8章为λ-矩阵,第9章为欧氏空间,第10章为双线性函数(选修).本书每节都配有相应的习题,
本书共六章,内容包括:矩阵、行列式、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换.每节配有适量习题,每章配有复习题,书末附有习题参考答案.本书脉络清晰,以矩阵为线索并贯穿全书始末,内容深入浅出,简明扼要,阐述详细.
本书是根据普通高等学校非数学专业本科线性代数课程教学大纲的基本要求,结合作者多年的教学实践编写而成。内容包括:行列式、矩阵、线性方程组、方阵的特征值与特征向量、数值计算初步、应用举例。在保证课程体系和数学逻辑完整性的基础上,本书更加重视体现出线性代数核心内容是如何在实际问题中出现的,其理论是如何在解决实际问题中发挥作用
图的有限制条件染色引论(英文版)
广义逆:理论与计算(第二版)(英文版)