从取代简单机械的重复劳动到辅助内容创作、医药开发、科学实验,人工智能产品正以惊人的速度在各行业大展拳脚,预示着人类即将进入一个全新的发展阶段。本书通过浅显易懂的语言帮助你理解人工智能产品是什么,人工智能产品是怎么创造出来的以及人工智能产品是如何进行创新迭代的。人工智能行业的快速发展对产品经理提出了更高的要求,产品经理需
本书基于作者多年的研究成果,详细介绍了跨数据中心机器学习的训练系统设计和通信优化技术。本书面向多数据中心间的分布式机器学习系统,针对多数据中心间有限的传输带宽、动态异构资源,以及异构数据分布三重挑战,自底向上讨论梯度传输协议、流量传送调度、高效通信架构、压缩传输机制、同步优化算法、异构数据优化算法六个层次的优化技术,旨
本书是《Scikit-learn机器学习详解》(潘风文编著)的进阶篇,讲解了Sklearn(Scikit-learn)机器学习框架的各种高级应用技术,包括数据集导入工具、集成学习、模型选择和交叉验证、异常检测、管道、信号分解、模型持久化以及Sklearn系统高级配置。通过本书的学习,读者可快速掌握Sklearn框架的高
PyTorch是基于Torch库的开源机器学习库,它主要由Meta(原Facebook)的人工智能研究实验室开发,在自然语言处理和计算机视觉领域都具有广泛的应用。本书介绍了简单且经典的入门项目,方便快速上手,如MNIST数字识别,读者在完成项目的过程中可以了解数据集、模型和训练等基础概念。本书还介绍了一些实用且经典的模
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、
本书从贝叶斯理论的基本原理讲起,逐步深入算法、机器学习、深度学习,并配合项目案例,重点介绍了基于贝叶斯理论的算法原理,及其在机器学习中的应用。 本书分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图
本书系统介绍了5G物联网端管云协同设计理念,主要内容包括基于STM32单片机的感知终端开发、基于5GNB-IoT和NR的感知数据处理与传输、采用公有云和自建云的物联数据存储与Grafana可视化平台,最后通过4个典型的物联网综合应用和两个物联网竞赛获奖实战案例,助力读者掌握面向端管云协同设计的物联网应用项目开发。为提高
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,
本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、