本书介绍非参数统计的基本概念和方法,其内容包括预备知识、U统计量、基于二项分布的检验、列联分析、秩检验、检验的功效与渐近相对效率、概率密度估计、非参数回归.每一章内容都着重阐述非参数统计推断的一般处理技术和原则,并给出一些典型例子.各章后面的习题侧重于应用.本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可
经济学家保罗·萨缪尔森曾说:“要想在现代社会里做一个有文化的人,你就必须对博弈论有一个大致的了解。”博弈是互动决策论,不是一个人的游戏,因为我们的行为会直接影响到对方的反应和决策。想要在有形或无形的谈判桌上获益更多,你争我夺、赢家通吃的做法并不理性,也无法实现目标,我们要学会分析和预测对方的想法和行为,在
本书重点研究了位置数据的智能聚类学习相关模型和算法前沿,集中反映了作者近年来对空间数据聚类与智能优化相结合的研究成果,系统阐述了GPS位置数据聚类学习的相关模型与算法。本书共分为7章,包括GPS位置数据聚类模型和智能优化的关键技术,GPS位置数据的遗传、模糊粒子-遗传融合、遗传-模糊蚁群混合自动聚类模型与算法,基于Ma
《数值计算方法实验教程》是一本针对数值计算方法的实验课程的指导用书.《数值计算方法实验教程》共8章,包括数值计算常用软件(MATLAB、C、Python)介绍、非线性方程求根实验、线性方程组的直接解法实验、线性方程组的迭代解法实验、函数的插值法实验、曲线拟合实验、数值积分实验、矩阵特征值与特征向量的计算实验.《数值计算
本书主要介绍概率论和随机过程的基础知识和基本概念,内容包括概率论和随机过程两部分。第1~5章介绍概率论的基本概念及定理,主要包括随机事件与概率、离散型随机变量及其分布、连续型随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理;第6章介绍随机过程的基本概念、泊松过程、马尔可夫过程、鞅、布朗运动、随机积分和伊藤公
《概率论与数理统计(人工智能专用)》介绍了与人工智能密切相关的概率论与数理统计的内容。全书分成两大部分,di一部分主要介绍概率论的知识,涵盖概率论的基本概念、一维随机变量及其分布、二维随机变量及其分布,数字特征,大数定理和中心极限定理外,还增加了信息论基础知识、若干集中不等式的相关知识。第二部分主要介绍常见的数理统计知
本书是概率论与数理统计课程的学习辅导书,内容包括:概率论的基本概念、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律及中心极限定理、样本及抽样分布、参数估计、假设检验等。每章均按章节顺序从基本概念、典型例题、综合练习三部分进行编写,并对典型例题进行了分析和详解.书后附有4套模拟试题,方便学生期末复习
本书主要介绍了统计和数据分析的基本知识、数据采集的操作、数据采集后的清洗加工操作、描述性统计分析、抽样估计分析、统计指数分析、相关与回归分析、时间序列分析、数据可视化展现,以及制作数据分析报告等内容。本书采用理论结合实战的方式,不仅介绍了数据分析的必要原理、方法,还充分结合了日常生活和工作中的案例,将理论加以实践和分析
本书是根据教育部高等学校统计学专业教学指导分委员会制定的《统计学专业教学规范(授经济学学位)》中提出的课程设置和教学内容纲要编写出版的系列教材之一。本书介绍数理统计学的统计思想、理论和方法,主要内容包括总体、样本、统计量等概念以及常用分布、点估计理论、假设检验、区间估计、线性模型以及统计决策理论和贝叶斯推断等。本书强调
本书第1章主要介绍变点检验和在线监测的一些经典方法,并介绍本书着重讨论的厚尾时间序列模型和长记忆时间序列模型.第2,3章主要介绍检验和估计厚尾时间序列模型均值变点和持久性变点的一些方法.第4,5章介绍检验长记忆时间序列均值变点、时间趋势项变点、方差变点及长记忆参数变点的一些方法.第6章介绍在线监测厚尾时间序列持久性变点