线性代数是大学数学教育中的重要基础课程。本书是为了给学生在学习线性代数的过程中提供适当的学习指导而编写的。本书从*章到第七章主要是关于行列式、矩阵的概念与运算,n维向量空间,线性方程组解的结构与求解方法,矩阵的特征值与特征向量,矩阵的对角化,二次型及其标准化,线性空间与线性变换等课程内容的学习指导。在前六章各章中给出了
本书是按照教育部高等学校数学与统计学教学指导委员会制定的《工科类本科数学基础课程教学基本要求》编写而成的。全书共分七章,主要内容包括行列式、矩阵的基本概念及其运算,矩阵的初等变换与初等矩阵,n维向量空间,线性方程组解的结构与求解方法,矩阵的特征值与特征向量,以及矩阵的对角化,二次型及其标准化,线性空间与线性变换等。在第
本书以教育部制定的《工科类本科数学基础课程教学基本要求》为依据,与同济大学编写的《线性代数》教材相配套。本书共分五章,每章内容包括教学基本要求、内容要点、精选题解析、疑难解析与强化练习题(A题、B题),书末附有四套自测题以及强化练习题和自测题的参考答案。本书将线性代数诸多问题进行了合理的归类,并通过对典型例题的解析,诠
本书在半群理论的基础知识上,介绍了近几十年来半群理论在广义正则半群方面的若干**研究成果。全书由三部分组成,第一部分拟正则半群,介绍了E-矩形性拟正则半群、E理想拟正则半群、Clifford拟正则半群、拟矩形群、左C拟正则半群等半群的特性和代数结构;第二部分富足半群和rpp半群,介绍了超富足半群、L*-逆半群、Q*-逆
本书根据理工科研究生学科发展要求,结合编者多年的教学实践经验编写。内容包括:线性空间与线性变换、向量和矩阵的范数、矩阵分析及其简单应用、矩阵分解、矩阵特征值的估计与对称矩阵的极性、广义逆矩阵、矩阵在数学建模中的应用,附录为基于Matlab的矩阵计算.全书简明扼要、条理清楚、方便学习。
本教材在保持传统教材优点的基础上,对教材内容、教材体系进行了适当的调整和简化。第一章为矩阵的概念及运算,由实例引出,并对分块矩阵、逆矩阵、初等矩阵等内容展开讨论;第二章首先对向量组的线性相关性、向量的秩展开讨论,并通过行秩,列秩给出矩阵的秩的定义,为确定方程组的解的结构做了一个较好的铺垫;第三章把行列式作为方阵的一种特
本书从师范院校数学专业的特点和要求出发,借鉴参考国内外优秀教材编写体例,注重高等代数知识的系统性和适用性,以及内容的可读性;渗透数学文化教育,关注科学精神的培养。通过专栏的形式,介绍代数学思想发展史,为培养学生的人文素养提供素材,帮助学生树立正确的数学观。精选例题、习题,注重层次及难易程度,满足学生专业发展需要。全书包
《线性代数》共五章,内容包括:行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、矩阵的相似对角化与二次型。各章中均有背景介绍和典型的应用案例分析,并配有适量的习题,书后附有部分习题答案。《线性代数》楷体排印内容和加*号的内容适用于分层次教学中较高层次的教学。
本书主要面向应用型本科人才的培养。内容包括:行列式、矩阵及初等变换法、求解线性方程组的理论与方法、向量的相关性理论、矩阵的特征值问题及二次型化标准形方法等。
本书内容包括:多项式;行列式;矩阵;向量与线性方程组;向量空间;仿真的标准形;内积空间;二次型。