本书第1章至第6章为实变函数与泛函分析的基本内容,包括集合与测度、可测函数、Lebesgue积分、线性赋范空间、内积空间、有界线性算子与有界线性泛画等.第7章介绍了Banach空间中的微分和积分,第8章介绍了泛函极值的相关内容.本书循着几何、代数、分析中熟悉的线索介绍了泛函分析的基本理论与非线性泛函分析的初步知识。
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函
本书简要介绍符号计算在可积系统中的一些应用.全书内容共五章:第1章为绪论,简单介绍Lie代数及Lie超代数,可积系统及其扩展,自相容源和守恒律,孤子方程的求解,数学机械化、符号计算及其在可积系统中应用.第2章借助符号计算,利用不同的方法研究了几类可积方程族和超可积方程族的可积耦合.第3章利用符号计算研究了Li族非线性可
算子逼近是国内外逼近论界研究的热点之一,提高算子的逼近阶是研究的主要目的.为了获得更快的逼近速度,一开始人们针对一些著名的古典算子引人了它们的线性组合.后来人们又给出了一个提高逼近阶的新途径,即引人了古典算子的所谓拟内插式算子,这一方法又把逼近阶提高到了一个新的高度.本书总结了20世纪90年代以来这方面的研究成果,其内
本书以Hilbert空间中线性算子数值域以及相关问题为主线,对线性算子数值域基本性质以及应用进行阐述.本书的内容框架如下:第1章主要介绍Hilbert空间中线性算子数值域.第2章主要介绍Hilbert空间中有界线性算子数值半径.第3章主要介绍Hilbert空间中一些特殊算子的数值域.第4章主要介绍由Hilbert空间中
本书始于实数的基本理论.接着进入一元微积分学,包括极限、连续、级数、微分、复数、积分等,重视它对现代数学的启迪,适时介绍些抽象概念(如对基的极限),以益于拓展到一般分析学回其次探讨拓扑空间(特别是度量空间、欧氏空间Rn)的映射,展开多元微积分学,其中涉及隐函数定理、集合上的积分、流形(特别是Rn中的曲面)及微分形式、流
本书是多复变函数论方面的入门书,着重介绍多复变数的解析函数、正交系与核函数、解析映照、零点与奇异点等方面的基本结果及存在的主要问题。这些问题有的已获得一些结果,有的尚待进一步研究。
本书分上、下两册.本册系统地讲述了线性泛函分析的基本思想和理论,分五章:距离线性空间与赋范线性空间;Banach空间上的有界线性算子;自反空间、共轭算子与算子谱理论;Hilbert空间上的有界线性算子以及广义函数论简介.本册注重讲述空间和算子的一般理论,取材既有基础的部分又有深刻的部分,读者可以根据需要进行适当的选择.
本书是教材《微积分(第四版)》的配套用书,是《<微积分(第四版)>学习参考》的缩编本,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括教材习题的解答与注释。
本教材在结合教指委基本要求的基础上,选择合适的教学内容和组织顺序,能够适用于普通本科教学,注重经济学案例的使用,强调经济问题的应用,体现出经济数学的“经济”特色。内容包含定积分、多元函数微积分、无穷级数、微分方程以及差分方程等知识。习题将按节设计,以提高题、综合题为主,适于学生平时练习考试及考研。