主要内容包括:行列式、矩阵、线性方程组、线性空间、线性变换、特征值与特征向量、欧氏空间、二次型、λ-矩阵与Jordan标准形、矩阵分解。
本书全面系统地介绍了矩阵的主要理论、方法及应用。全书共分九章,内容包括:线性空间与线性变换、内积空间、矩阵的标准形、矩阵的分解、特征值的估计、矩阵分析、矩阵的应用、矩阵的广义逆、非负矩阵。本书适合于需要矩阵知识比较多和比较深刻的理科(数学、物理、力学)和信息科学与技术(电子、通讯、自动控制、计算机、系统工程、模式识别、
本书按照“讲清道理,再讲推理”的模式编写,系统、连贯地介绍了行列式、矩阵、向量、线性方程组、矩阵的相似二次型、向量空间与线性变换等内容。考虑到不同学时不同层次的教学需要,书中第7章为选学内容,不会影响教材的系统性。在例题、习题选取方面,本书遵循少而精、难易适度的原则,每章均配有典型例题和习题,书后附有参考答案与提示,并
这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当
《线性代数》以易学易教为出发点,以线性方程组的求解为主线,展开线性代数的经典内容,主要内容有:线性方程组,矩阵,行列式,向量组的线性关系,对角化,二次型,线性空间与线性变换,考虑到对内容的不同要求,在编写体例上,由浅入深,由基本要求到更高要求,逐步展开,更高要求的内容放在横线下以小字体编排或加,这些内容可根据需要选学或
《矩阵论》共6章,系统地介绍了矩阵论的基本理论与方法,内容包括线性空间与线性变换、内积空间与等距变换、矩阵Jordan标准形、矩阵分解、矩阵分析、矩阵的广义逆。本教材不仅注重基本理论与方法,还注重理论与实践的有机结合。
本书对大学数学系高等代数的内容和知识,从思想方法方面给以重新结构和认识,旨在提高学生解决高等代数乃至数学问题的能力。视野广阔,结构新颖,思想独到,分析深刻,有助于使读者在创新能力提高方面受益.本书对大学数学系高等代数的内容和知识,从思想方法方面给以重新结构和认识,旨在提高学生解决高等代数乃至数学问题的能力。视野广阔,结