《近可积系统的轨道稳定性》研究近可积系统的轨道稳定性问题,包括KAM环面的存在性、有效稳定性和拟有效稳定性等问题.《近可积系统的轨道稳定性》涉猎了Hamilton系统、扭转映射、辛映射等通常形式和参数形式的多种近可积系统.从应用角度,《近可积系统的轨道稳定性》探讨了扰动氢原子的Hamilton系统和近可积小扭转映射的轨
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题.《矩阵特征值定位理论》共五章,包括预备知识、Ger.gorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toepl
本书较全面地介绍了线性代数的主要内容。全书共7章,分别介绍了行列式、n维向量、矩阵、线性方程组、方阵的特征值和特征向量、二次型以及线性空间与线性变换。每章末配有一定数量的习题,并在书后附有习题参考答案。每章后面都附有一篇阅读材料,或介绍一则基础知识,或给出一种重要方法,以便于查阅和开阔视野。
《线性代数(第三版)》根据编者多年的教学实践,参考普通本科院校理工、经管类专业线性代数课程教学大纲及硕士研究生入学考试大纲编写而成.内容涵盖行列式、矩阵、线性方程组与向量组、矩阵的特征值与特征向量、二次型等知识;《线性代数(第三版)》融入了MATLAB数学软件程序实现的教学内容,特别地,每章还给出了线性代数的2—3个实
本书内容包括:行列式、矩阵、线性方程组与向量组的线性相关性、相似矩阵与二次型、线性空间与线性变换、数学软件Matlab简介与上机实验,书末附有常用“线性代数”英文专业词汇及部分习题参考答案与提示。
组合数学的研究对象是有限或可数的离散结构或模式,其目标之一就是在给定的准则下对结构或模式进行计数和枚举.因此,组合数学属于离散数学的范畴,是算法科学的数学基础.本书主要介绍组合计数技术,共八章,内容安排上紧紧围绕组合数学中三大计数技术——母函数、容斥原理和Pólya计数理论展开,具体包括基本计数技术、母函数及其应用、递
本册教材分4个单元,用14个活动分别介绍了图像处理、图文编排、Flash动画制作以及通过班级网络进行交流学习等知识。内容丰富,由浅入深,操作步骤清晰。
本书内容全面,系统性强,涵盖了国内工科研究生对矩阵论的几乎全部知识点,并在教学结构上进行了创新的优化和调整。本书包含五章内容。第一章为对线性代数知识的回顾,第二章介绍线性空间的定义、赋范线性空间、内积空间;第三章介绍线性变换;第四章介绍若当标准型及详细的矩阵分析及矩阵函数等内容;第五章介绍矩阵分解、广义逆、Kronec
本书是基于作者多年来为本科生、硕士研究生讲授组合分析方法及应用课程的讲义与作者的研究成果编写而成。全书系统介绍组合数学的存在性和计数两大组合分析领域的主要理论、方法及其应用,共八章,内容包括鸽巢原理及其应用、排列与组合及二项式系数、容斥原理及其应用、生成函数与递归关系、二阶线性齐次递归序列、组合序列及其性质、组合反演公
本书系统深入地阐述了矩阵结构和矩阵函数的公理化体系,并给出基于此公理体系进行形式化分析与验证的应用。主要内容包括:矩阵结构的形式化;矩阵序列与矩阵级数理论的形式化;矩阵函数微分的形式化;矩阵理论的自动化定理证明;矩阵理论公理化系统在信息或物理系统形式化建模验证中的应用。