抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科的选修课和研究生的必修课。结合代数是应用非常广泛的一种代数结构。将这些内容作为此课程的内容是非常合适的。在长期教授此课程后所形成本书,含有:结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示和某些非结合代数等五章。本书力求深入浅出,循序
本书是根椐理工科的数学教学大纲编写的,作为昆明理工大学《线性代数》课程使用的教材。在使用过程中,作过多次修改。在内容编写上,我们注意到以下几点:第一,本课程的教学时数少,为了使学生能在较少的时间内掌握好基本知识,编写时尽量使各章内容少而精,重点突出,便于理解和掌握.特别是对第三、四两章的理论体系的安排及定理的证明上,更
《线性代数》涵盖了教育部制定的大学本科线性代数的教学基本要求的内容.全书共分5章,分别为行列式,矩阵,向量组的线性相关性与线性方程组的解法,特征值、特征向量与二次型,线性空间与线性变换.全书内容深入浅出,层次简洁,注重应用,每章后配有适量习题并按难易程度分类,并在书后附有习题参考答案或提示。《线性代数》可供普通高等院校
《线性代数(第2版)》共分七章,内容包括行列式、矩阵及其运算、矩阵的初等变换、向量组的线性相关性、矩阵的相似变换、二次型、线性空间与线性变换。各章后均配有适量的习题,书后附有习题答案与提示。另外还专门编有与《线性代数(第2版)》配套的辅导书、辅导光盘、作业集等。《线性代数(第2版)》便于教学与自学,可作为高等院校工科和
《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的
本书是普通高等教育“十一五”国家级规划教材。全书系统介绍了群、环、域的基本概念与初步性质,共分为三个部分。第一部分讲述群的基本概念与性质,除了通常的群、子群、正规子群及群同态的基本定理外,还介绍了群的应用。第二部分包括环、子环、理想与商环的基本概念与性质,特别讨论了整环的性质。第三部分讨论了域的扩张的理论。
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:第12至14章讨论线性代数、代数和表示论;第15至17章是理想理论;第18至20章讨论赋值域、代数函数及拓扑代数。
本书是范德瓦尔登所著,是代数学中的经典,为后代代数学者所推崇并被大量引用。本书得到冯克勤、胡作玄等人的推荐。
本书从模的角度重新审视和认识线性代数课程,内容包括:线性代数研究的对象、向量空间与线性变换、主理想整环上的模及其分解、向量空间在线性算子下的分解等。
这是E.Hecke写的一本代数数论入门书,初版于1923年用德文出版,即产生巨大影响。1981年,Springer出版了英文版,并入GTM从书之中。本书观点高,从具体例子入手,导入重要的概念。 本书向读者介绍了构成代数数论理论框架的一般问题的一个理解。从数学特别是算数的发展中引出结论,并用群论的术语与方法来给出关于有