《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的
本书是普通高等教育“十一五”国家级规划教材。全书系统介绍了群、环、域的基本概念与初步性质,共分为三个部分。第一部分讲述群的基本概念与性质,除了通常的群、子群、正规子群及群同态的基本定理外,还介绍了群的应用。第二部分包括环、子环、理想与商环的基本概念与性质,特别讨论了整环的性质。第三部分讨论了域的扩张的理论。
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:第12至14章讨论线性代数、代数和表示论;第15至17章是理想理论;第18至20章讨论赋值域、代数函数及拓扑代数。
本书是范德瓦尔登所著,是代数学中的经典,为后代代数学者所推崇并被大量引用。本书得到冯克勤、胡作玄等人的推荐。
本书从模的角度重新审视和认识线性代数课程,内容包括:线性代数研究的对象、向量空间与线性变换、主理想整环上的模及其分解、向量空间在线性算子下的分解等。
这是E.Hecke写的一本代数数论入门书,初版于1923年用德文出版,即产生巨大影响。1981年,Springer出版了英文版,并入GTM从书之中。本书观点高,从具体例子入手,导入重要的概念。 本书向读者介绍了构成代数数论理论框架的一般问题的一个理解。从数学特别是算数的发展中引出结论,并用群论的术语与方法来给出关于有
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等著名数论问题吸引了古今无数的数学爱好者.本书全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及最新进展,是研究这些问题必不可少的入门书
本书阐述同调代数的基本理论与方法,包括范畴、模、同调、同调函子与一些环、谱序列等五章.另外还有两个附录,阐述正则局部环的理论与Serre问题
本书上册论述了有限群的基本知识,下册着重介绍有限群的一些新成果、发展动向以及有限群的某些较专门的部分,如卡特子群、传输理论、超可解群等