本书基于高阶约束流、Hamilton结构及Sato理论提出了构造孤立子系统的Rosochatius形变、Kupershmidt形变、带源形变以及扩展的高维可积系统的一般方法,并以光纤通信及流体力学中的重要模型,如超短脉冲方程、Hirota-方程、Camassa-Holm型方程及q-形变的KP方程等为例详细阐述了我们提出
本书研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。书中给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得
本书根据数学分析课程知识点的正常教学顺序设计,共六十讲。主要通过极限、实数基本定理、微积分和无穷级数等教学内容介绍数学分析中的思想方法。书中内容既有细致到具体小知识点的思想方法,也有覆盖到数学分析大知识体系的思想方法。通过这些基本思想方法的讲解,使读者能够在较短时间内掌握数学分析思想,对数学分析内容有深刻的理解,也可以
本书以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、
本书是一部系统地介绍Nabla离散分数阶系统理论的专著,其中包含了许多原创性成果和未解问题.针对Nabla离散分数阶系统,本书讨论了其稳定性分析和控制器设计问题,为了便于验证所提理论,还介绍了数值实现方法.本书由浅入深、循序渐进地展开,虽不是字斟句酌的教科书,但所给出的结论均提供了巧妙且严谨的证明,既介绍了灵感来源,提
本书主要讨论无穷维Hamilton系统,旨在用现代非线性分析的框架研究无穷维Hamilton系统。本书先介绍无穷维Hamilton系统的定义和性质,同时选取现代非线性分析中的常见问题为例解释其应用。我们采用变分的方法,建立统一的变分框架并且发展一些抽象的临界点理论来处理无穷维Hamilton系统。特别地,对于量子理论中
本书详细介绍小波变换的起源、原理和应用,内容覆盖傅里叶变换、窗口傅里叶变换、框架理论、连续小波变换、多分辨率分析、Daubechies正交小波、小波包、小波提升理论以及小波在信号处理和图像处理等方面的应用,涵盖了发展比较成熟的小波分析的所有基本内容。另外,本书特别关注实际应用和数学理论之间的关联,强调解决实际问题中的数
近年来,在图像处理与强度可调辐射疗法的实际应用背景下,分裂可行性问题成为近期非线性分析的研究热点之一。本专著从三个方面研究分裂可行性问题与广义分裂可行性问题(分裂公共不动点问题、分裂变分不等式问题和分裂公共零点问题)解的迭代逼近。主要体现在新算法设计、空间扩展和参数减弱限制条件等方面。对于丰富和扩展分裂可行性问题相关理
第1-12章是《测度论基础与高等概率论》上册,其中第1,2章是预备知识,第3-12章是测度论基础。本书强调背景知识的深刻描述、基本概念的自然引入、科学素养的悄然渗透,从谋篇布局到板块转换,直至例题编制都精雕细琢,从章节引言到问题切人,直至定义、引理、命题、定理前的导语都字斟句酌。为避免初学者从初等概率论到高等概率论因跃
第1-12章是《测度论基础与高等概率论学习指导》上册,其中第1,2章是预备知识,第3-12章是测度论基础。作为学习指导用书,本书与同名作者编著的《测度论基础与高等概率论》配套,目的是部分地解决初学者学习“测度论”和“高等概率论”等课程的过程中在做题环节常常无从下手、方向感差、不知论证是否严谨,解答是否完整等问题。与教材